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Abstract

Let F be a non-archimedean local field whose residue field has at least four elements.
Let G be a connected reductive group over F that splits over a tamely ramified extension
of F . We provide a construction of supercuspidal representations of G(F ) that contains
all the supercuspidal representations constructed by Yu in 2001 ([Yu01]), but that
also works in residual characteristic two. The input for our construction is described
uniformly for all residual characteristics and is analogous to Yu’s input except that we
do not require our characters to satisfy the genericity condition (GE2) that Yu imposes.
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Remark. It is precisely here that our assumption of p odd makes its impact. We
are dealing with the representation theory of a 2-step nilpotent p-group. The extra
complications in this theory that arise when p = 2 could be handled, but at the expense
of a long digression.

— Roger Howe, 1977*

1 Introduction

The construction of supercuspidal representations of p-adic groups plays a central role in the
representation theory of p-adic groups and beyond. While for GLn and its inner forms such a
construction is known in full generality ([BK93,SS08]), for other families of reductive groups,
including classical groups, the existing general constructions [Adl98,Yu01,Ste08] assume that
p 6= 2. In the present paper we provide a construction of supercuspidal representations of
general tame p-adic groups for all p. Our construction generalizes Yu’s construction ([Yu01])
by allowing p = 2 and, in addition, relaxing a genericity condition imposed by Yu on the
input for the construction. In particular, we recover as a special case the supercuspidal
representations constructed by Yu, which are all supercuspidal representations if p does not
divide the order of the absolute Weyl group of G. Even in this already known setting, our
proof contains new elements. In particular, we do not rely on Gérardin’s delicate analysis of
the Weil representation in [Gér77, Theorem 2.4(b)].

The reasons that previous authors required p 6= 2 are subtle and depend on the setting.
Stevens’ work for classical groups assumed p 6= 2 because the Glauberman correspondence
(see [Ste01, (2.1) Theorem]) does not apply to involutions of pro-2-groups. Yu’s work for
more general tame p-adic groups assumed p 6= 2 since he crucially relied on the theory of
Heisenberg–Weil representations (see [Yu01, Section 10]). At the simplest level, this theory
does not immediately extend to the case p = 2 because a factor of 1/2 appears in Yu’s
definition of the Heisenberg group over Fp. But as we will see below, there are much more
serious obstructions, which we address in this paper.

To describe our results in more detail, let F be a non-archimedean local field whose residue field
has characteristic p and cardinality q, and let G be a connected reductive group over F that
splits over a tamely ramified extension of F . Let Υ = ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n)
be an input for Yu’s construction, but where we allow p = 2 and relax the assumption that
each φi satisfies the genericity condition (GE2) of [Yu01]; see Section 3.1 for more details.

Theorem A (cf. Theorem 3.6.9). If q > 2, then the input Υ gives rise to a finite set

of supercuspidal representations, each of which is a compact induction c-ind
G(F )

K̃
(σ) of an

irreducible representation σ from an open, compact-mod-center subgroup K̃ of G(F ).

*[How77, p. 447], in a paper constructing supercuspidal representations of GLn(F ).
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See Theorem 3.6.9 for a more precise statement2. For the reader familiar with Yu’s con-
struction, let us mention that the open, compact-mod-center subgroup K̃ lies between the
following two subgroups that are built out of Moy–Prasad filtration subgroups of the reductive
groups appearing in the input Υ (the notation is explained in Section 1.1.):

K+ := G1(F )x,r1/2 ·G2(F )x,r2/2 · · ·Gn(F )x,rn/2 ·NG(G1, G2, . . . , Gn, Gn+1)(F )[x] ,

K := G1(F )x,r1/2 ·G2(F )x,r2/2 · · ·Gn(F )x,rn/2 ·Gn+1(F )[x] .

The construction of the representation σ proceeds in two steps. The first step produces from
the given input Υ a unique representation, called ρ⊗κ−, of a subgroup K− of K with K/K−

being a finite abelian 2-group; see (3.2.2) for the precise definition of K− and Section 3.2 for an
overview of the construction of the representation. The second step produces a representation
σ of K̃ using Clifford theory, which allows the reader to make choices that we discuss and
parameterize in Section 3.3. If G = GLn, or if G is a classical group and p 6= 2, or if we are
in Yu’s setting, i.e., if p 6= 2 and each φi satisfies the additional genericity condition (GE2) of

[Yu01], then K̃ = K− = K and no choices are required.

We provide a few more details on the two steps. The first step generalizes Yu’s construction
using the theory of Heisenberg–Weil representations. The key challenge is that the theory of
Heisenberg–Weil representations as used by Yu is not available if p = 2.

Already the Heisenberg Fp-group itself shows an exceptional feature for p = 2. While for
p > 2 all Heisenberg Fp-groups of the same cardinality are isomorphic, for p = 2 there are two
isomorphisms classes of Heisenberg groups of cardinality 21+2n for any n > 1. Both classes
of groups arise in the construction of supercuspidal representations (see Example 3.4.2).
However, this quirk is not an obstacle for the construction of supercuspidal representations
as the theory of Heisenberg representations carries over to the setting of p = 2. That theory
has also been already used in the case of the the general linear group; see, for example,
[Wal86, Section II] and [BK93, (7.2.4) Proposition].

On the other hand, the theory of Weil representations, which is crucial in the construction of
supercuspidal representations, does not work for p = 2 in the same way as for p > 2. Let H
be a Heisenberg Fp-group of order p1+2n. A key difference consists in the structure of the
group of automorphisms AutZ-fix(H) of H that act trivially on the center of H. When p 6= 2,
the group AutZ-fix(H) decomposes as a semi-direct product AutZ-fix(H) ' F2n

p o Sp2n(Fp),
and the projective Weil representation of Sp2n(Fp) admits a linearization, which Yu used to
construct supercuspidal representations. When p = 2, the group AutZ-fix(H), which we call
the pseudosymplectic group Ps2n(F2), following Weil, does not factor as a semidirect product:
rather, there is a short exact sequence 1→ F2n

2 → Ps2n(F2)→ O2n(F2)→ 1, which is nonsplit
if n ≥ 3. Because Ps2n(F2) contains the group F2n

2 of inner automorphisms, its projective
Weil representation does not linearize (see Remark 2.5.1).

2In fact, Theorem 3.6.9 assumes q > 3, ultimately because of Lemma 3.6.7. When q = 3, although our
analysis of the Heisenberg–Weil representation is insufficient to treat this case, one can combine [Yu01] and
[Fin21] with our analysis of the failure of (GE2) to construct supercuspidal representations from Υ.
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So when p = 2, there is no natural ambient group, like Sp2n(Fp) when p 6= 2, whose Weil
representation we can use to construct supercuspidal representations. Instead, we prove in
Lemma 2.5.5 that the projective Weil representation linearizes over certain large subgroups
of the automorphism group AutZ-fix(H), and we show that we can arrange for all the relevant
groups that appear in the construction of supercuspidal representations to map to such
linearizing subgroups (Lemma 3.5.2 and Corollary 3.5.3).

A priori two possible linearizations of the (restriction of the) projective Weil representations
differ by a character of the linearizing subgroup. Contrary to Sp2n(Fp) with p 6= 2, whose
characters are trivial unless (n, p) = (1, 3), our linearizing subgroups do admit non-trivial
characters in general. In order to obtain a unique representation κ− of K− using our theory
of Heisenberg–Weil representations, we observe that if p = 2, the Heisenberg representation
is self-dual and thus carries an additional real or quaternionic structure. Requiring the Weil
representation to preserve this structure pins down the Weil representation up to a character
of order two (Remark 2.5.3), and pin down κ− uniquely if q > 2 (Proposition 3.5.6).

The second step in the construction of σ involves Clifford theory (see Section 3 for details).
This allows the reader to make a choice and the finite set of supercuspidal representations
mentioned in Theorem A correspond to different choices. These additional choices can only
be described after κ− is constructed and we therefore found it unnatural to record them as
part of the input Υ, as we explain in more detail in Remark 3.3.3. Note that the quotient
K̃/K (and hence also K̃/K−) is not always abelian (see Appendix D). However, we prove

that K̃/K− is a p-group ((3.2.2) and Theorem 3.6.8(b)).

Once the construction of (K̃, σ) is achieved, the proof that the resulting representation

c-ind
G(F )

K̃
(σ) is irreducible supercuspidal follows in rough terms [Yu01] and [Fin21], though

the details require some new key ideas.

First, we can no longer rely on Gérardin’s analysis of the Weil representation, in particular
[Gér77, Theorem 2.4(b)], as he only covers the Weil representations of Sp2n(Fp) that appear
for p 6= 2. Consequently, our arguments reprove without using [Gér77, Theorem 2.4(b)] that
Yu’s original construction yields supercuspidal representations.

Second, once we remove the condition that the characters in the input Υ satisfy Yu’s condition
(GE2), the proof of supercuspidality requires more complicated arguments. The inducing

group K̃ is now larger than K in general, and at certain steps in the arguments we must
replace the reductive groups Gi of the input Υ by disconnected groups with identity component
Gi. The problem is that the character φi−1 of Gi(F ) in the input Υ need not extend to this
disconnected group, invalidating one key step in the old arguments of supercuspidality. To
compensate, we carefully pass certain results about intertwiners to simply-connected covers.
We refer the reader to the proof of Theorem 3.6.8 for details.

Note that not requiring (GE2) produces supercuspidal representations not covered by Yu’s
construction not only if p = 2, but also if p is odd and small3, e.g., if G = SLn and p divides n.

3(GE2) can fail only if p is a torsion prime for the dual root datum of G. The torsion primes p of a simple
adjoint group are p | n for An; 2 for Bn, Cn, Dn, G2; 2, 3 for F4, E6 E7; and 2, 3, 5 for E8. See [Ste75].
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1.1 Notation and conventions

We let F be a nonarchimedean local field of residue characteristic p with discrete valuation
val : F � Z ∪ {∞}. We denote by kF the residue field of F and by q = |kF | the cardinality
of kF . We fix a separable closure F sep of F and take all finite separable field extensions of F
to lie inside F sep.

All reductive groups in this paper are required to be connected unless explicitly stated
otherwise. Let G be a reductive group over F . We write Gder for the derived subgroup of G
and Gsc for the simply connected cover of Gder. We denote the image of Gsc(F ) in G(F ) by
G(F )\. We denote the Lie algebra of G either by Lie(G) or by using lowercase Fraktur letters,
so that g is the Lie algebra of G, for example. Let Lie∗(G) denote the dual Lie algebra. We

write Ĝ for the Langlands dual group of G.

Given a linear algebraic group H, we write H◦ for the connected component of H containing
the identity and π0(H) := H/H◦ for the component group of H, a finite algebraic group.

Given a torus T , we denote by X∗(T ) the set of characters of TF sep := T ×F F sep with action
of the absolute Galois group Gal(F sep/F ). For an algebraic group P containing T we write
Φ(P, T ) for the set of non-zero weights of T acting on the Lie algebra of P , equipped with the
action of Gal(F sep/F ). In particular, if T is a maximal torus of G, then Φ(G, T ) ⊂ X∗(T ) is
the absolute root system of G with respect to T , equipped with Galois action. In this case,
given α ∈ Φ(G, T ), we write Hα := dα∨(1) ∈ Lie(T )(F sep). When T is a maximal split torus
of G, so that Φ(G, T ) is the relative root system, we denote by Uα the root group for the set
of positive-integer multiples of α ∈ Φ(G, T ). So if 2α ∈ Φ(G, T ), then Uα is nonabelian.

Let R̃ := R ∪ {r+ | r ∈ R} ∪ {∞} with its usual order, as in [KP23, Section 1.6]. We write

B(G,F ) for the enlarged Bruhat–Tits building of G over F . For r ∈ R̃ and x ∈ B(G,F ),
we denote by g(F )x,r, g(F )∗x,r, Uα(F )x,r, and G(F )x,r the respective depth-r Moy–Prasad
subgroups at x of the F -points of the Lie algebra g, its linear dual g∗, the root group Uα,
and the group G, where in the last case we assume r ≥ 0. If F is clear from the context,
we might omit it from the notation, e.g., we write gx,r instead of g(F )x,r and Gx,r instead
of G(F )x,r. If Gder is anisotropic, for example, if G = T is a torus, then we may suppress
x from the notation and write gr, g

∗
r, and G(F )r. Let G(F )\x,r := G(F )\ ∩ G(F )x,r. Given

x ∈ B(G,F ), we write [x] for the image of x in the reduced building of G. If a group H acts
on the reduced building of G, then we denote by H[x] the stabilizer of [x] in H(F ).

A subgroup H of G is a twisted Levi subgroup if HE := H ×F E is a Levi subgroup of a
parabolic subgroup of G for some (finite, separable) field extension E/F . If a twisted Levi
subgroup H splits over a tame extension E, then there is an admissible embedding of buildings
B(H,F )→ B(G,F ) ([KP23, Section 14.2]). In general, this embedding is only well-defined
up to translation, but all translations have the same image. In this paper we will identify
B(H,F ) with its image in B(G,F ) for some fixed choice of embedding, and all constructions
are independent of this choice.

In this paper, the word “representation” with no additional modifiers refers to a complex
representation. However, we will sometimes work with “R-representations” or “R-linear
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representations” for R ∈ {R,C,H}, referring to R-linear representations on R-modules. See
page 11 for a discussion of these notions, which can also be viewed as extra structure on
an underlying complex representation. We write c-ind for compact induction. Given an
irreducible representation π of G(F ), we denote by depth(π) the depth of π.

Given a group A, we denote by Z(A) the center of A and by Irr(A) the set of isomorphism
classes of irreducible representations of A. We write [a, b] := aba−1b−1 for the commutator of
a and b. Given a subgroup B of A, let NA(B) be the normalizer of B in A. More generally,
given subgroups B1, . . . , Bn, let NA(B1, . . . , Bn) :=

⋂n
i=1NA(B). We write aB := aBa−1 and

given a representation π of B, we write aπ for the representation x 7→ π(a−1xa) of aB. If in
addition B is normal in A, then we denote by NA(π) the set of a ∈ A such that aπ ' π and
by Irr(A,B, π) the set of σ ∈ Irr(A) such that σ|B contains π. Given a set X and an action
of A on X, we write XA for the set of elements of X fixed by A, and given in addition an
element x ∈ X, we write ZA(x) for the set of a ∈ A such that a(x) = x.

Suppose k is an arbitrary field and `/k is a field extension. If `/k is finite and T is a k-torus,
then we denote by Nm`/k : T (`)→ T (k) the corresponding norm map. In particular, when
T = Gm, this map is the usual norm `× → k×. If `/k is Galois, we write Gal(`/k) for the
Galois group of the extension.

Let V be a vector space over a field k. Given a quadratic form Q on V, we write O(V, Q) for
the usual orthogonal group, the elements of GL(V) stabilizing Q. We define the subgroup
SO(V, Q) of O(V, Q) as the kernel of the determinant if char(k) 6= 2 or the kernel of the
Dickson invariant if char(k) = 2, so that [O(V, Q) : SO(V, Q)] = 2 if V 6= 0. Similarly, given
an alternating form ω on V, we write Sp(V, ω) for the usual symplectic group, the elements
of GL(V) stabilizing ω. We will often drop Q or ω from the notation in O(V, Q), SO(V, Q)
and Sp(V, ω) when their presence is clear from context.

Acknowledgments

The authors thank Kazuma Ohara for feedback on an earlier version of this paper.

2 Heisenberg–Weil representations

Let k be a field. The reader is welcome to take k = Fp since this is the only case that will be
needed in the construction of supercuspidal representations. Nonetheless, we allow k to be a
general field, or sometimes, a finite field, because it is no harder to state the results in that
setting. Recall that p is a prime number, including possibly p = 2, and q is a positive integer
power of p.

2.1 Heisenberg groups

In this subsection we explain how to extend the definition of the Heisenberg group over Fp
for odd p (cf. Example 2.1.7) to the case p = 2. The resulting group has extremely explicit
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models (Construction 2.1.3 and Examples 2.1.7 and 2.1.8), but to find this group within a
p-adic group, we will also characterize it by intrinsic properties (Definition 2.1.2).

Recall that the exponent of a finite group is the least common multiple of the orders of its
elements. The following class of finite p-groups already appeared in the work of Hall and
Higman [HH56, Section 2.3], and has been extensively studied and used as a tool by finite
group theorists; see [Gor80, p. 183 and Chapter 5.5] for a textbook treatment.

Definition 2.1.1. A finite p-group P is an extraspecial p-group if its center Z(P ) has order p
and P/Z(P ) is abelian of exponent p.

Specializing the definition of extraspecial p-group very slightly and allowing the degenerate case
Z/pZ yields the version of the Heisenberg group relevant to the construction of supercuspidal
representations.

Definition 2.1.2. A Heisenberg Fp-group is a finite group P whose center Z(P ) has order
p and for which P/Z(P ) is abelian of exponent at most p and if p 6= 2 then also P is of
exponent at most p.

In other words, a Heisenberg Fp-group is either Z/pZ or an extraspecial p-group, which is in
addition required to have exponent at most p when p 6= 2. The case p = 2 requires special
care: In this case we cannot require P to have exponent 2 because that would force P to be
abelian, and hence we would only obtain the group P = Z(P ) ' Z/2Z.

The “Fp” appearing in our terminology reflects the fact that there is a general construction
of the Heisenberg group over a field k, specializing to Definition 2.1.2 when k = Fp. We recall
this construction to help with computations and comparison with the literature, though we
will more often take the intrinsic viewpoint of Definition 2.1.2.

Construction 2.1.3 (Heisenberg k-groups). Let k be a field and V a finite-dimensional
k-vector space. Given a bilinear form B : V ⊗k V→ k, we can interpret B as an element of
Z2(V, k) and define the resulting extension V]B of V by k. In other words, V]B is the group
with underlying set k × V and multiplication

(a, v) · (b, w) = (a+ b+B(v, w), v + w).

The group V]B is a Heisenberg k-group if Z(V]B) = k, where we identify k with k × {0} from
now on, or equivalently, if the associated alternating form below is nondegenerate:

ωB(v, w) := B(v, w)−B(w, v). (2.1.4)

If q = pd with d ≥ 2, then a Heisenberg Fq-group is a p-group but not a Heisenberg Fp-group
because the center is too large. Relatedly, our construction of supercuspidal representations
will ultimately use Heisenberg Fp-groups, even though the residue field of F may be larger
than Fp. However, the two notions agree for k = Fp.
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Lemma 2.1.5. Every Heisenberg Fp-group is obtained from Construction 2.1.3 with k = Fp.

Proof. Let P be a Heisenberg Fp-group. If P has order p, then P ' V]B for V being a
zero-dimensional FP -vector space. Hence, we assume the order of P is p2n+1 with n ≥ 1,
which implies that P is an extraspecial p-group. Therefore P has the following explicit
presentation (see, e.g. [Win72, p. 160]): P has generators x1, x2, . . . x2n and relations

xixjx
−1
i x−1

j =


z if (i, j) = (2d− 1, 2d) for 1 ≤ d ≤ n,

z−1 if (i, j) = (2d, 2d− 1) for 1 ≤ d ≤ n,

1 otherwise,

zxi = xiz for 1 ≤ i ≤ 2n, zp = 1, and xpi = 1 for 1 ≤ i ≤ 2n− 2, and
if p 6= 2, then xp2n−1 = xp2n = 1, and
if p = 2, then either (case a) x2

2n−1 = x2
2n = 1 or (case b) x2

2n−1 = x2
2n = z.

Let V = F2n
p with standard basis {ei : 1 ≤ i ≤ 2n}. When p 6= 2 or p = 2 and P satisfies the

relations in case a above, then we define B by

B(ei, ej) =

{
1 if (i, j) = (2d− 1, 2d) for some d

0 otherwise.

When p = 2 and P satisfies the relations in case b above, then define B by setting
B(e2d−1, e2d) = 1 for 1 ≤ d < n,

B(e2n−1, e2n−1) = B(e2n, e2n) = B(e2n−1, e2n) = 1,

and B(ei, ej) = 0 otherwise. Sending xi to (0, ei) and z to (1, 0) defines a surjective group

homomorphism P � V ]
B, which is an isomorphism since both groups have the same order.

Although there are many possible bilinear forms B for which ωB is nondegenerate, the
classification of Heisenberg k-groups is rather simple.

Lemma 2.1.6. In the setting of Construction 2.1.3, let B,B′ : V ⊗k V→ k be two bilinear
forms whose associated alternating forms ωB and ωB′ are nondegenerate.

(a) Suppose char(k) 6= 2. Then V]B ' V]ωB ' V]B′.

(b) Suppose char(k) = 2. If the quadratic forms B(v, v) and B′(v, v) are GL(V)-conjugate,
then V]B ' V]B′. The converse holds if k = F2.

We refer the reader to Appendix A for a review of the definition and properties of alternating
and quadratic forms in characteristic 2.

Proof. Given a function f : V→ k and a linear automorphism σ ∈ GL(V), the map

(a, v) 7→ (a+ f(v), σv)

9



Tame supercuspidal representations Jessica Fintzen and David Schwein

defines an isomorphism V]B → V]B′ as long as the following identity holds:

f(v + w)− f(v)− f(w) = B′(σv, σw)−B(v, w), v, w ∈ V.

If in addition f ∈ Sym2(V∗) is a quadratic form, then the lefthand side of this expression is
a general symmetric bilinear form when char(k) 6= 2 and a general alternating form when
char(k) = 2 (see Appendix A).

When char(k) 6= 2, since the form

(2B − ωB)(v, w) = B(v, w) +B(w, v)

is symmetric, V]B ' V]2B ' V]ωB . But then V]B ' V]ωB ' V]ωB′ ' V]B′ because any two
nondegenerate alternating forms on V are GL(V)-conjugate.

When char(k) = 2, if B′(v, v) is conjugated to B(v, v) by σ ∈ GL(V), then the form
B′(σv, σw)−B(v, w) is alternating and thus V]B ' V]B′ . Note that (a, v)2 = (B(v, v), 0) for any

a ∈ k. Hence, if τ : V]B ' V]B′ is an isomorphism of abstract groups, then the automorphism
of V induced by τ takes the quadratic form B(v, v) to the quadratic form B′(v, v). When
k = F2, this induced automorphism of V is automatically k-linear.

Explicitly, Lemma 2.1.6 gives the following description of Heisenberg Fp-groups.

Example 2.1.7 (Heisenberg Fp-groups, odd p). Suppose p 6= 2. By Lemma 2.1.6(a), for every
n ≥ 1 there is a unique (up to isomorphism) Heisenberg Fp-group of order p2n+1, constructed
as follows. Given a symplectic Fp-vector space (V, ω) of dimension 2n, the group V]ω is the
set-theoretic product Fp × V with multiplication

(a, v) · (b, w) = (a+ b+ 1
2
ω(v, w), v + w).

Example 2.1.8 (Heisenberg F2-groups). Let (V, Q) be a finite-dimensional quadratic space
over F2 of even dimension with Q non-degenerate. Up to isomorphism, there are two possible
isomorphism classes of (V, Q) when dim(V) ≥ 2: the split space, isomorphic to k2n with Q
given by (A.1), and the nonsplit space, isomorphic to k2n−2⊕ `, where `/k is a quadratic field
extension, with Q given by (A.2). By Lemma 2.1.6(b), there are two isomorphism classes
of Heisenberg F2-groups of every fixed order 22n+1: one of “positive type” for the split form
and one of “negative type” for the nonsplit form. In the simplest nontrivial case, order 8,
the positive-type group is the dihedral group D8 of order 8 and the negative-type group is
the quaternion group Q8. Example 3.4.2 shows that both types of groups are needed in the
construction of supercuspidal representations.

In the finite group theory literature, extraspecial 2-groups are described as built up from D8

and Q8 as follows. Given Heisenberg F2-groups P and Q, identify Z(P ) and Z(Q) with F2

and define the central product P ◦Q as the quotient (P ×Q)/Z where Z is the kernel of the
multiplication map Z(P )× Z(Q)→ F2. Then every Heisenberg F2-group P of order 22n+1 is
isomorphic to a central product

P1 ◦ P2 ◦ · · · ◦ Pn

10
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where each Pi is either D8 or Q8. Two such groups are isomorphic if and only if the number
of their quaternionic factors has the same parity, since D8 ◦D8 ' Q8 ◦Q8. The positive-type
group is D8 ◦ · · · ◦D8 and the negative-type group is Q8 ◦D8 ◦ · · · ◦D8.

2.2 R-representations

In this subsection we describe a certain structure of an “R-representation” carried by every
self-dual irreducible representation of a finite group. This structure plays a key role in
linearizing projective Weil representations, as we explain in more detail in Section 2.5.

Let A be a finite group. Let (π, V ) be an irreducible complex representation of A and let
(π∗, V ∗) be the dual representation. Let H denote the ring of quaternions over R.

Suppose that π is irreducible. Following Serre [Ser77, Section 13.2], there are the following
three mutually exclusive possible situations, indexed by a ring R ∈ {R,C,H} that we call
the Frobenius–Schur type of π.4

(1) π is complex: π 6' π∗, or equivalently, the character of π is not real-valued.

In the remaining two cases π ' π∗, but there are two ways that this can happen, depending
on the sign of the form V ⊗C V → C resulting from the isomorphism π ' π∗.

(2) π is real: the form is symmetric, or equivalently, there is a representation defined over R
whose extension of scalars to C is π.

(3) π is quaternionic: the form is alternating, or equivalently, there is a structure of a right
H-module on V for which the action of G on V is H-linear.

We index the Frobenius–Schur type of π by a ring R because π can be repackaged as an
R-module, as follows. Given R ∈ {R,C,H}, an R-representation of A is a right R-module W
together with an R-linear action of A on W , or in other words, a homomorphism ρ from A to
the group GL(W,R) of R-linear automorphisms of W . Then to each R-representation (ρ,W )
of A we associate as follows a complex representation (π, V ) of A:

(1) If R = C, then π = ρ.

(2) If R = R, then V = C⊗R W with π the base change of ρ.

(3) If R = H, then V = W with C-module structure pulled back along an R-algebra
embedding C ↪→ H and π is the composition of ρ and GL(W,R)→ GL(V ).

If the complex representation π is irreducible, then it has Frobenius–Schur type R.

4This terminology is nonstandard but is inspired by the Frobenius–Schur indicator, which equals 0, +1,
or −1 for an irreducible representation of Frobenius–Schur type C, R, or H, respectively.
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Lemma 2.2.1. Let (ρ,W ) be an irreducible R-representation of A with associated complex
representation (π, V ). Suppose (π, V ) is irreducible. Then the isomorphism class of ρ as
an R-representation is uniquely determined by the isomorphism class of π as a complex
representation.

Proof. If R = C, then there is nothing to prove, so assume R ∈ {R,H}. Then GL(W,R) ⊆
GL(V,C) = GL(V ) and it suffices to show that if two homomorphisms ρ1, ρ2 : A→ GL(W,R)
whose associated complex representation is irreducible become conjugate in GL(V ), then
they were already conjugate in GL(W,R).

For this, we use Galois descent. There is a reductive R-group G such that G(R) = GL(W,R)
and G(C) ' GL(V ): if R = R, then G is isomorphic to GLn,R where n = dim(V ), and if
R = H, then G is the nonsplit inner form of a general linear group.

Let Transp(ρ1, ρ2) be the elements of GL(V ) that conjugate ρ1 to ρ2. To complete the
proof, we need to show that this set has a Gal(C/R)-fixed point. The centralizer ZGL(V )(ρ1)
of ρ1 in GL(V ) acts on Transp(ρ1, ρ2) by right multiplication, and this action turns the
Gal(C/R)-set Transp(ρ1, ρ2) into a ZGL(V )(ρ1)-torsor in the sense of [Ser02, Chapter 1,
Section 5.2]. Such torsors are classified by the cohomology set H1(Gal(C/R), ZGL(V )(ρ1)).
But ZGL(V )(ρ1) = Z(GL(V )) ' C× by Schur’s Lemma, since the complex representation
associated to ρ1 is irreducible, and Gal(C/R) acts on this group in the usual way, by complex
conjugation. So the set H1(Gal(C/R), ZGL(V )) = H1(Gal(C/R),C×) is trivial by Hilbert’s
Theorem 90 and thus the torsor is trivial, implying that it has a Gal(C/R)-fixed point.

Next we turn to projective representations. Let R ∈ {R,C,H} and let W be a finite-
dimensional right R-module. Then

Z(GL(W,R)) = Z(R)× '

{
C× if R = C,

R× if R ∈ {R,H}

and we write PGL(W,R) := GL(W,R)/Z(R)×. We define a projective R-representation of a
finite group A to be a group homomorphism ρ̄ : A→ PGL(W,R), and an R-linearization of ρ̄
to be a group homomorphism ρ : A→ GL(W,R) lifting ρ̄. If ρ and ρ′ are two R-linearizations
of ρ̄, then there is a character χ : A → Z(R)× such that ρ′ = χ ⊗ ρ. Since A is finite, the
character χ takes values in the maximal compact subgroup

Z(R)×c =

{
{z ∈ C | |z| = 1} if R = C,

{±1} if R ∈ {R,H}.

Consequently, linearizing real or quaternionic projective representations involves less of a
choice than linearizing complex projective representations. In the first case the linearization is
unique if and only if A has no characters of order two, but in the second case the linearization
is unique if and only if A is perfect, which is a much stronger condition.

12
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Lemma 2.2.2. Let R ∈ {R,H}, let A be a finite group, let P ⊆ A be a Sylow 2-subgroup,
and let ρ̄ be a projective R-representation. Then ρ̄ has an R-linearization if and only if ρ̄|P
has an R-linearization.

This result is similar to [Gér77, Lemma 1.5], but much more general: there is no need to
assume that A or π have a particular form.

Proof. The pullback of the short exact sequence

1 R× GL(V,R) PGL(V,R) 1.

via ρ̄ : A→ PGL(V,R) yields an extension of A by R× which is split if and only if ρ̄ has an
R-linearization. Let c ∈ H2(A,R×) be the cocycle class attached to this extension, which is
trivial if and only if the extension splits. Note that since A is a finite group, H2(A,R×) =
H2(A, {±1}) ⊕ H2(A,R×>0) = H2(A, {±1}). Since the restriction map H2(A, {±1}) →
H2(P, {±1}) is injective ([Ser79, Chapter IX, Theorem 4]), we can detect the vanishing of c
by restricting to P , and hence if ρ̄|P has an R-linearization, then so does ρ̄.

2.3 Heisenberg representations

In this subsection we recall the representation theory of Heisenberg Fp-groups, paying special
attention to the Frobenius–Schur type—real, complex, or quaternionic—of the Heisenberg
representation. Let P be a Heisenberg Fp-group, let ψ : Fp → C× be a nontrivial character,
and let VP := P/Z(P ), an Fp-vector space.

Lemma 2.3.1 (Stone–von Neumann theorem). There is (up to equivalence) a unique irre-
ducible representation ωψ of P whose restriction to Fp is ψ-isotypic. Moreover, dim(ωψ) =√
|VP |.

Proof. This follows from [Gér77, Lemma 1.2] and Lemma 2.1.5.

Definition 2.3.2. We call the representation ωψ of Lemma 2.3.1 the Heisenberg representation
of P corresponding to ψ.

In order to relate the Heisenberg representations of P to the Heisenberg representations
of appropriate subgroups of P that are themselves Heisenberg Fp-groups, and to compute
their Frobenius–Schur type, we first introduce some additional notation and make a few
observations.

By Lemma 2.1.5, a direct calculation, and identifying Z(P ) with Fp, the formulas

ωP (xZ(P ), yZ(P )) := [x, z], QP (xZ(P )) := x2 (p = 2) (2.3.3)

define a symplectic form on VP and, when p = 2, a nondegenerate quadratic form on VP .
The nondegeneracy of those forms follows from observing that if P = V]B, then under the

13
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identification of VP with V, we have ωP = ωB, and, if p = 2, then QP (v) = B(v, v) for
v ∈ VP = V and ωB = BQP using the notation of Appendix A. Following Appendix A, we
extend the notions of nondegenerate subspace, isotropic subspace, polarization, and partial
polarization to VP , taking these notions with respect to the nondegenerate alternating form ωP
when p 6= 2 and with respect to the nondegenerate quadratic form QP when p = 2.

Let W be a subspace of VP . A splitting of W (in P ) is a subgroup 0×W of P for which the
natural projection P � P/Z(P ) = VP induces an isomorphism 0×W

∼−→ W. The subspace
W admits a splitting if and only if W is isotropic, and all splittings are conjugate under the
inner automorphism group VP of P . At the opposite extreme, the preimage of W in P is a
Heisenberg Fp-group if and only if W is a nondegenerate subspace.

Let VP = V+ ⊕ V0 ⊕ V− be a partial polarization, and let P0 be the preimage of V0 in P . Let
ωψ and ω0,ψ be the Heisenberg representations of P and P0, respectively. Choose a splitting
0× V+ of V+ in P and let V+ × P0 be the internal direct product of 0× V+ and P0 in P .
Let triv� ω0,ψ denote the inflation of ω0,ψ along the resulting projection map V+ × P0 → P0.

Lemma 2.3.4. Let P be a Heisenberg Fp-group. With the notation of the paragraph above,

(a) ωψ ' IndPV+×P0
(triv� ω0,ψ) (b) (ωψ)0×V+ ' ω0,ψ.

Proof. For the first part, by Lemma 2.3.1, we know that dim(ωψ) =
√
|VP |. Since

dim
(
IndPV+×P0

(triv� ω0,ψ)
)

=
√
|V0| · |V−| =

√
|VP | = dim(ωψ)

and this induced representation has central character ψ, it must be the Heisenberg repre-
sentation. For the second part, we use an identification of P with V]B for some B as in
Construction 2.1.3 that sends 0× V+ to {0} × V+. Then {0} × V−, which we identify with
V− via (0, v) 7→ v, forms a set of coset representatives for P/(V+ × P0), and by the first part
we can describe ωψ as the space of functions f : V− → Vω0,ψ

on which V]B acts as follows

((a, v+ + v0 + v−)f)(x) = ω0,ψ(a, v0)ψ(ωB(v+, x))f(x+ v−)

where x ∈ V−, (a, v0) ∈ V]0, v+ ∈ V+, and v− ∈ V−. Such an f is fixed by 0× V+ if and only
if f(x) = 0 for all x 6= 0. The assignment f 7→ f(0) is the desired isomorphism.

If the partial polarization is a polarization, then Lemma 2.3.4(a) gives a construction of the
Heisenberg representation. Indeed, in this case V0 = 0 and P0 = Fp if p 6= 2 or P has positive
type, and dim(V0) = 2 and P0 = Q8 if P has negative type, meaning we can easily construct
ω0,ψ by hand. We will now use this observation to compute the Frobenius–Schur type of the
Heisenberg representation, which will ultimately allow us to reduce the number of choices in
the construction of supercuspidal representations (see Remark 2.5.3 and Proposition 3.5.6).

Lemma 2.3.5. The Heisenberg representation is complex if p 6= 2, real if p = 2 and P is of
positive type, and quaternionic if p = 2 and P is of negative type.

14
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Proof. Let ωψ denote the Heisenberg representation. If p 6= 2, then ωψ is complex because
ω∗ψ ' ωψ−1 6' ωψ. Now suppose p = 2. In general, if a complex representation of a subgroup
of a finite group is self-dual, then its induced representation is self-dual of the same Frobenius–
Schur type as the original representation. Using Lemma 2.3.4(a) for a polarization of VP , we
may therefore assume that P = F2 or P = Q8. Now in the positive type case the Heisenberg
representation F2 ↪→ {±1} ⊂ C× is visibly real, and in the negative type case the Heisenberg
representation can be identified with the tautological embedding Q8 ↪→ H× = GL(H), which
is visibly quaternionic.

Definition 2.3.6. Let R ∈ {R,C,H} be the Frobenius–Schur type of the Heisenberg
representation ωψ corresponding to ψ. The Heisenberg R-representation corresponding to ψ is
the irreducible R-representation of P whose associated complex representation is ωψ.

2.4 The pseudosymplectic group

We work in the same setting as Construction 2.1.3: Let k be a field, let V be a finite-
dimensional k-vector space, and let B : V ⊗k V → k be a bilinear form. Assume that the
associated alternating form ωB of (2.1.4) is nondegenerate. In this subsection we review
Weil’s definition [Wei64, Section 31] of the pseudosymplectic group Ps(V), as well as Blasco’s
extension [Bla93, Section 1] to the case where char(k) = 2 and the associated quadratic form
is not split.

Definition 2.4.1. The pseudosymplectic group Ps(V) = Ps(V, B) is the set of pairs (f, σ) ∈
Sym2(V∗)×GL(V) such that

f(v + w)− f(v)− f(w) = B(σv, σw)−B(v, w)

with multiplication law

(f, σ) · (f ′, σ′) = (f ′′, σσ′), f ′′(v) := f(σ′v) + f ′(v).

Our formula is slightly different from Weil’s because he uses the right action of GL(V) on V
while we use the left action.

The pseudosymplectic group Ps(V) = Ps(V, B) is a subgroup of the group AutZ-fix(V]B) of
automorphisms of V ]

B that fix the center of V ], where (f, σ) corresponds to the automorphism
V ]
B 3 (a, v) 7→ (a+ f(v), σv) ∈ V ]

B.

When char(k) 6= 2, the projection (f, σ) 7→ σ defines an isomorphism Ps(V, B) ' Sp(V, ωB),
which we may use to identify these two groups. But when char(k) = 2, the map (f, σ) 7→ σ
fits into a short exact sequence

1→ (V∗)(2) → Ps(V, B)→ O(V, QB)→ 1, QB(v) := B(v, v), (2.4.2)

where (V∗)(2) denotes the space of diagonal quadratic forms Q, i.e., those for which Q(v +
w) = Q(v) + Q(w). This exact sequence splits if and only if k = F2 and dim(V) ≤ 2
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[Bla93, Section 1.3] (cf. [Gri73, Theorem 1]). Moreover, the algebraic group underlying
Ps(V) is disconnected when p = 2. We write Ps◦(V) for (the k-points of the algebraic group
underlying) the identity component of Ps(V). So if p 6= 2, then Ps◦(V) = Ps(V) ' Sp(V) and
if p = 2, then Ps◦(V) is the preimage of SO(V).

Using Ps(V), we can describe the automorphism group AutZ-fix(V]B).

Fact 2.4.3 ([Win72, Theorem 1]). Let k = Fp and recall that AutZ-fix(V]B) denotes the group

of automorphisms of V]B that act trivially on the center.

(a) If p 6= 2, then AutZ-fix(V]B) ' V o Sp(V, ωB) and Out(V]B) ' Sp(V, ωB).

(b) If p = 2, then AutZ-fix(V]B) = Aut(V]B) = Ps(V) and Out(V]B) ' O(V, QB).

2.5 Weil representations

We remain in the setting of Construction 2.1.3, but assume in addition that k = Fp is
a finite field with p elements, and suppress B from the notation. Let ψ be a nontrivial
additive character of k, and let ωψ be the corresponding Heisenberg representation of V] (see
Definition 2.3.2). Given a subgroup A of Ps(V), since Ps(V) acts trivially on the center of V]

and ωψ is the unique irreducible representation of V] with central character ψ, the action
of A preserves ωψ up to isomorphism and thereby gives rise to a projective representation
of A on the space underlying the Heisenberg representation, which we call the projective Weil
representation of A.

Our construction of supercuspidal representations requires us to linearize the projective Weil
representation for certain subgroups A. When p 6= 2, the whole projective Weil representation
Ps(V) can be linearized ([Gér77, Theorem 2.4(a)]). When p = 2 and V is nontrivial, however,
such a linearization is not possible (Remark 2.5.1 below). Moreover, without additional
constraints, there is ambiguity in the choice of linearization: the character group of A
acts transitively, by twisting, on the set of linearizations. Since A is often abelian in our
applications, this ambiguity is quite dire.

To deal with both of these problems, linearizing at all and pinning down a specific linearization,
we use a special feature of the Heisenberg representation present only when p = 2: the structure
of an R-representation, for R ∈ {R,H}. The first problem is resolved by a simple criterion
for R-linearizability, Lemma 2.5.5, which builds on the abstract criterion Lemma 2.2.2. The
second problem is resolved by the general fact that an R-linearization is unique up to a
character of order two, rather than an arbitrary complex character.

Remark 2.5.1. In characteristic 2, the projective Weil representation is not linearizable.
If it were, then its restriction to the subgroup (V∗)(2) of (2.4.2) would be linearizable as
well. In other words, since (V∗)(2) acts on V] by the group V of inner automorphisms, there
would exist a representation π : V n V] → GL(Vωψ) extending the Heisenberg representation
V] → GL(Vωψ). Since ωψ is irreducible, for every v ∈ V there would then be a scalar c(v) ∈ C×
such that π(v) = c(v)ωψ(0, v). The fact that π and ωψ are homomorphisms forces the function
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c to satisfy a certain identity, which we can use to show that c(v) is contained in the pth
roots of unity µp and that c(v) gives rise to a splitting of the homomorphism V] → V. This
is a contradiction; no splitting exists.

In characteristic 6= 2, the same argument shows that the projective Weil representation of
AutZ-fix(V) ' V o Sp(V) is not linearizable.

Let A be a subgroup of Ps(V) and let R ∈ {R,C,H} be the Frobenius–Schur type of the
Heisenberg representation ωψ of V]. Then for every a ∈ A, by Lemma 2.2.1, the a-twist of
the Heisenberg R-representation is isomorphic to the Heisenberg R-representation, and the
intertwiner between these two representations is unique up to scaling by Z(R)×. Hence we
obtain a projective R-representation of A, which we call the projective Weil R-representation.

Definition 2.5.2. Let A be a subgroup of Ps(V) and let R be the Frobenius–Schur type of
the Heisenberg representation of V]. A Weil R-representation of A is defined to be:

(a) When p 6= 2, the restriction to A of Gérardin’s Weil representation of Ps(V) ' Sp(V)
[Gér77, Lemma 2.4(a)].

(b) When p = 2, some R-linearization (if it exists) of the projective Weil R-representation
of A.

A Weil representation of A is the complex representation associated to a Weil R-representation
of A.

Remark 2.5.3 (How unique is the Weil representation?). When p 6= 2, the projective Weil
representation of Ps(V) has a unique linearization unless Ps(V) = Sp2(F3), in which case
there are three linearizations and Gérardin singles out one of them. So a Weil representation
of A is unique when p 6= 2.

When p = 2, the Weil representations all differ from each other by twisting by an order-two
character. So if A has no character of order two, then its Weil representation is unique.

To finish this subsection, we give a criterion for a Weil R-representation to exist. We recall
from Section 2.1, page 14, that if V = V+⊕V0⊕V− is a partial polarization, we may identify
the preimage of V0 in V] with V]0. If 0× V+ is a splitting of V+ in V], then we write V+ × V]0
for the internal direct product of 0× V+ and V]0, which is the preimage of V+ ⊕ V0 in V].

Definition 2.5.4. Let V+ ⊆ V be an isotropic subspace and 0× V+ a splitting of V+ in V].
Define P(0× V+) to be the subgroup of Ps(V) consisting of the elements g such that

(a) g(0× V+) = 0× V+, and

(b) g(x) · x−1 ∈ 0× V+ for all x ∈ V+ × V]0.
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Lemma 2.5.5. Let ψ : Fp → C× be a nontrivial character, let R ∈ {R,C,H} be the Frobenius–
Schur type of the Heisenberg representation of V] corresponding to ψ, and let H be a subgroup
of Ps(V). Suppose there is a Sylow p-subgroup Hp of H, an isotropic subspace V+ of V, and a
splitting 0× V+ of V+ such that

Hp ⊆ P(0× V+).

Then the Heisenberg R-representation of V] extends to an R-representation of H n V] whose
restriction to H is a Weil R-representation.

Proof. By Definition 2.5.2 (and Remark 2.5.3 for p 6= 2), a desired R-linear extension to
H n V] exists if and only if the restriction of the projective Weil R-representation to H
can be lifted to an honest R-representation of H. By [Gér77, Lemma 1.5] when p 6= 2 and
Lemma 2.2.2 when p = 2, it suffices to show that the Heisenberg R-representation ωRψ extends

to Hp n V]. Write P := P(0× V+). Extend the Heisenberg R-representation ωR0,ψ of V]0 to

the R-representation π of P n (V+ × V]0) defined by the formula

π : (p, v, x) 7→ ω0,ψ(x), p ∈ P , v ∈ 0× V+, x ∈ V]0.

By the definition of P , this formula defines a homomorphism: p(v, x)p−1 = (v+w, x) for some
w ∈ 0× V+, and then π(v +w, x) = π(v, x) because 0× V+ ⊆ ker(π). Using Lemma 2.3.4(a),

we deduce that the restriction to V] of the induced representation IndPnV]

Pn(V+×V]0)
π is isomorphic

to ωRψ . Restricting IndPnV]

Pn(V+×V]0)
(π) to Hp n V] yields therefore an extension of ωRψ to an

R-representation.

Definition 2.5.6. We call an R-representation of HnV] as in the conclusion of Lemma 2.5.5,
i.e., one whose restriction to H is a Weil R-representation and whose restriction to V] is
Heisenberg R-representation, a Heisenberg–Weil R-representation. We call the associated
complex representation a Heisenberg–Weil representation.

3 Construction of supercuspidal representations

Let F be a non-archimedean local field. Let G be a connected reductive group that splits
over a tamely ramified extension of F .

3.1 The input

The input to our construction of supercuspidal representations is analogous to the input that
Yu ([Yu01]) uses, but it allows p = 2 and removes the genericity assumption (GE2) imposed
by Yu ([Yu01, Section 8]). We follow the conventions in [Fin21]; see [Fin21, Remark 2.4] for
a comparison of conventions.

Throughout the paper we will use the following weaker notion of generic elements.
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Definition 3.1.1 (cf. [Fin, Definition 3.5.2]). Let G′ be a connected reductive F -group and
let H ⊆ G′ be a twisted Levi subgroup that splits over a tamely ramified field extension of F .
Let x ∈ B(H,F ), and let r ∈ R>0.

(a) An element X ∈ Lie∗(H)H(F ) is (G′, H)-generic of depth r if it satisfies conditions
(GE0) and (GE1) of [Fin, Definition 3.5.2].

(b) A character φ of H(F ) is (G′, H)-generic (relative to x) of depth r if φ is trivial on
H(F )x,r+ and the restriction of φ to H(F )x,r/H(F )x,r+ is realized by an element of
Lie∗(H)H(F ) that is (G′, H)-generic of depth −r (as in [Fin, Definition 3.5.2(b)]).

Notably, these conditions do not require (GE2).

The input to our construction is a tuple (cf. [Fin21, Section 2.1])

Υ = ((Gi)1≤i≤n+1, x, (ri)1≤i≤n, ρ, (φi)1≤i≤n)

for some non-negative integer n, where

(a) G = G1 ⊇ G2 ) G3 ) . . . ) Gn+1 are twisted Levi subgroups of G that split over a
tamely ramified extension of F ,

(b) x ∈ B(Gn+1, F ) ⊂ B(G,F ),

(c) r1 > r2 > . . . > rn > 0 are real numbers,

(d) ρ is an irreducible representation of (Gn+1)[x] that is trivial on (Gn+1)x,0+,

(e) φi, for 1 ≤ i ≤ n, is a character of Gi+1(F ) of depth ri,

satisfying the following conditions

(i) Gn+1 is elliptic in G, i.e., Z(Gn+1)/Z(G) is anisotropic,

(ii) the image of the point x in B(Gder
n+1, F ) is a vertex,

(iii) ρ|(Gn+1)x,0 is a cuspidal representation of (Gn+1)x,0/(Gn+1)x,0+,

(iv) φi is (Gi, Gi+1)-generic relative to x of depth ri for all 1 ≤ i ≤ n.

For brevity, we will refer to such an object Υ as a supercuspidal G-datum, and we will fix such
a datum from now on.
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3.2 Overview of the construction

We will now construct several objects out of a supercuspidal G-datum Υ, culminating in a
supercuspidal representation. The dependence on Υ is implicit, not reflected in the notation.

Define the open, compact-mod-Z(G) subgroups

K+ := G1(F )x,r1/2 ·G2(F )x,r2/2 · · ·Gn(F )x,rn/2 ·NG(G1, G2, . . . , Gn, Gn+1)(F )[x] ,

K := G1(F )x,r1/2 ·G2(F )x,r2/2 · · ·Gn(F )x,rn/2 ·Gn+1(F )[x] .

Then K is a normal, finite-index subgroup of K+. Note that our K is denoted by K+ in
[Fin21, Section 2.5], but we want to avoid too many tildes and indices.

Lemma 3.2.1. Let G′ be a connected reductive F -group and let H ⊆ G′ be a twisted Levi
subgroup that splits over a tamely ramified extension of F . Let x ∈ B(H,F ) and let φ be a
character of H of depth r. Then there exists a unique character φ̂(G′,x) of H(F )[x] ·G′(F )x,r/2+

such that φ̂(G′,x) and φ agree on H(F )[x] and (H,G′)x,r+,r/2+ ⊆ ker(φ̂(G′,x)).

Proof. This follows from the argument at the beginning of [Yu01, Section 4].

In particular, for each 1 ≤ i ≤ n we have a character φ̂i := (φ̂i)(G,x) of (Gi+1)[x] ·Gx,ri/2+ that
extends the restriction of φ to (Gi+1)[x].

5

Our goal is to construct a representation σ of a certain group K̃ := NK+(ρ⊗ κ) contained

between K and K+. The irreducible supercuspidal representation is then c-ind
G(F )

K̃
(σ). If

the characters in the input Υ satisfy Yu’s additional condition (GE2), then K̃ = K (see
Theorem 3.6.8(b)). The construction takes two steps, which we briefly summarize before
describing them in more detail.

First, we define a certain normal subgroup K− of K, for which the quotient K/K− is an
abelian 2-group if p = 2 and is trivial otherwise (see (3.2.2)). Using the Heisenberg–Weil
representation, we construct an irreducible representation κ− of K− (see Lemma 3.5.8).

Second, we make two choices: an irreducible representation κ of K whose restriction to K−

contains κ−, and an irreducible representation σ of K̃ := NK+(ρ⊗ κ) whose restriction to K
contains ρ⊗ κ. These two choices can be studied using Clifford theory, and we reflect on the
choices in Section 3.3.

Step 1: Heisenberg–Weil representation. The first step uses the theory of Heisenberg–
Weil representations that features in Yu’s work ([Yu01]) in the case p 6= 2, but which was
before this paper not available in the case of p = 2.

5Our character φ̂ is defined on a slightly larger subgroup than Yu’s character φ̂, which was defined on
the subgroup (Gn+1)[x] · (Gi+1)x,0 ·Gx,ri/2. There is little risk of confusion, however, because our character
extends Yu’s character.
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For r̃, r̃′ ∈ R̃ \ {∞} with r̃ ≥ r̃′ ≥ r̃/2 > 0, let (Gi)x,r̃,r̃′ = (Gi+1, Gi)(F )x,r̃,r̃′ as in [Fin21,
Section 2.5]. In Lemma 3.4.1 we will show that the group

V\i := (Gi)x,ri,ri/2/((Gi)x,ri,ri/2+ ∩ ker(φ̂i))

is a Heisenberg Fp-group. Let (ωi, Vωi) denote the Heisenberg representation of V\i with
central character φi|(Gi)x,ri,ri/2+ (Definition 2.3.2).

Define the group
K− := (G1)x,r1,r1/2 · · · (Gn)x,rn,rn/2Gn+1(F )−[x] (3.2.2)

where if p 6= 2, then (Gn+1)−[x] := (Gn+1)[x], and if p = 2, then (Gn+1)−[x] is defined to be the

kernel of the projection map from (Gn+1)[x] to the finite abelian 2-group

((Gn+1)[x]/(Z(G(F )) · (Gn+1)x,0))⊗Z Z(2). (3.2.3)

The lefthand factor is a finite abelian group by [KP23, Corollary 11.6.3].

The representation κ− of K− will have underlying vector space Vκ− :=
⊗n

i=1 Vωi . To define
κ− we give an action of each factor of K− on each vector space Vωi , form the tensor product
of the actions to produce an action of each factor of K− on Vκ− , and then check that the
actions of the different factors of K− are compatible, so that they descend to a morphism
κ− : K− → GL(Vκ−) (see Lemma 3.5.8). More precisely, let 1 ≤ i, j ≤ n. Then the factor
(Gi)x,ri,ri/2 acts on the space Vωj when i 6= j by the character φ̂j|(Gi)x,ri,ri/2 , and when i = j

by the Heisenberg representation ωi of V\i with central character φ̂i|(Gi)x,ri,ri/2+ . As for the

factor (Gn+1)−[x], we let (Gn+1)−[x] act on Vωi via φi ⊗ ωi, where ωi denotes the restriction of a

(pull back of a) Weil–Heisenberg representation as in Notation 3.5.4 (see also Corollary 3.5.3
and Proposition 3.5.6). While Weil representations in general are only uniquely defined
up to twisting by an order-two character (Remark 2.5.3), the resulting representation ωi is
uniquely defined when q > 2 because it is inflated from a group with no characters of order
two (Proposition 3.5.6).

Step 2: Clifford theory. Recall from Section 1.1 that if A is a group, B is a normal
subgroup of A, and π is a representation of B, then we write Irr(A,B, π) for the set of
σ ∈ Irr(A) whose restriction to B contains π.

First, let κ ∈ Irr(K,K−, κ−). If p 6= 2, then K− = K and κ = κ−. By Lemma 3.3.1(a), the
character group of K/K− acts transitively, by twisting, on the set of such κ. We may now
inflate the representation ρ from Gn+1(F )[x] to K by asking the inflation to be trivial on
G1(F )x,r1/2 ·G2(F )x,r2/2 · · ·Gn(F )x,rn/2. We denote this inflation by ρ as well, and we form
the tensor product ρ⊗ κ of the inflation with κ.

Second, let σ ∈ Irr(K̃,K, ρ⊗ κ), where we recall that K̃ := NK+(ρ⊗ κ). By Lemma 3.3.1(b),
these σ are in bijection with the irreducible representations of the intertwining algebra

EndK̃
(
IndK̃K(ρ⊗ κ)

)
.

In Theorem 3.6.9(a) we will show that the representation c-ind
G(F )

K̃
(σ) is irreducible and

supercuspidal if q > 3. The representations c-ind
G(F )

K̃
(σ) for varying σ can also be recovered as
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the irreducible subrepresentations of c-ind
G(F )
K (ρ⊗ κ), by Theorem 3.6.9(b). If the characters

φi in the input Υ of the construction satisfy Yu’s condition (GE2), then c-ind
G(F )
K (ρ ⊗ κ)

itself is irreducible (see Theorem 3.6.9(c)).

3.3 Choices to be made in the construction

Let Υ be a cuspidal G-datum and assume q > 3. Ideally, a construction of supercuspidal
representations would output a single irreducible representation from each input Υ. For
several reasons, however, our construction is not so precise. In this subsection we reflect on
the choices in our construction, in addition to Υ, that one needs to make to produce a single
supercuspidal representation. We stress that these additional choices are only necessary when
either p = 2 and G has complicated Bruhat–Tits theory at x, or when p is a torsion prime
for the Langlands dual group Ĝ. Neither of these phenomena occur for the general linear
group, where additional choices are not necessary (see Remark 3.3.5).

The only choices the reader has to make in the construction outlined in Section 3.2 are the
representations κ ∈ Irr(K,K−, κ−) and σ ∈ Irr(K̃,K, ρ ⊗ κ), which are described by the
following lemma.

Lemma 3.3.1.

(a) The character group of K/K− acts transitively, by twisting, on the set Irr(K,K−, κ−).

(b) There is a bijection Irr(K̃,K, ρ⊗ κ) ' Irr
(
EndK̃

(
IndK̃K(ρ⊗ κ)

))
.

Proof. The first part is a special case of [Kal, Lemma A.4.3] since K/K− is abelian, and the
second is a special case of Lemma B.1(a).

Remark 3.3.2 (On choosing κ and σ). The choices of κ and σ are of a different nature.

The choice of κ can be accounted for by refactorization, as in the work of Hakim and
Murnaghan [HM08, Definition 4.19]. Specifically, suppose κ and κ′ are two choices of an
element of Irr(K,K−, κ−). Then by Lemma 3.3.1(a) there is a character χ of (Gn+1)[x] trivial
on (Gn+1)−[x] such that κ′ = χ⊗ κ, where we identify χ with its inflation to K. Let Υ′ be the

supercuspidal G-datum obtained from Υ by replacing ρ with ρ′ := χ⊗ρ. Since ρ⊗κ′ = ρ′⊗κ,
and the supercuspidal representations we construct depend only on this tensor product rather
than its individual factors, we would produce the same set of supercuspidal representations
by choosing κ′ for Υ or κ for Υ′. All in all, choosing a different κ can be accounted for by
instead modifying the depth-zero part of Υ.

The choice of σ is in general of a nonabelian nature and cannot be accounted for by
refactorization. In Appendix D, summarized in Remark D.11, we give an example where
dim(σ) > dim(ρ⊗ κ), showing that in general σ might not extend ρ⊗ κ.

Remark 3.3.3 (Why we do not refine the input Υ). Our construction is formulated so that
a single G-datum Υ gives rise to a finite set of supercuspidal representations rather than a

22



Tame supercuspidal representations Jessica Fintzen and David Schwein

single one. For many reasons it would be advantageous to reformulate the construction so
that it produce an individual representation, starting from a variant datum Σ which would
somehow record the choices of σ and κ. However, such a reformulation would come at the
price of making the input Σ much more conceptually and notationally complicated than Υ.

In more detail, suppose that κ extends to a representation κ̃ of K̃ = NK+(ρ ⊗ κ) (for any
allowed choice of ρ). Then, instead of the representation ρ of (Gn+1)[x] as the input in Υ, we
could take as an input in Σ a depth-zero representation ρ̃ of a group Kρ̃, with K ⊆ Kρ̃ ⊆ K+,
such that NK+(ρ̃|K ⊗ κ) = Kρ̃ and ρ̃ is cuspidal when restricted to (Gn+1)x,0. In terms of
our current language, σ = ρ̃⊗ κ̃. In this new language, however, the input is unpleasant to
describe because one needs to already construct K and κ to even define where ρ̃ lives.

We finish by discussing the case of the general linear group.

Lemma 3.3.4. Let k be a field, let G = GLn over k, and let M be a twisted Levi subgroup
of G. Then there are separable field extensions `1, . . . , `r of k and integers d1, . . . , dr with
n =

∑r
i=1 di[`i : k] such that M '

∏r
i=1 Res`i/k GLdi. If, moreover, M is elliptic, then r = 1.

Proof. Let ksep be a separable closure of k, let M0 be a Levi subgroup of G, let N0 = NG(M0),
and let W0 = NG(M0)/M0. There is a section W0 → N0 that preserves a fixed pinning of M0,
which we use to write N0 'M0 oW0.

We can identify (G/N0)(k) with the set of twisted Levi subgroups of G that are G(ksep)-
conjugate to M0. If M ′ is one such Levi subgroup, then the isomorphism class z′ ∈
H1(k,Aut(M0)) corresponding to M ′ is the image of M ′ under the composite map

(G/N0)(k) −→ H1(k,N0) −→ H1(k,Aut(M0)),

where the first map is the connecting homomorphism and the second is obtained from the
conjugation action N0 → Aut(M0). At the same time, the composition W0 → N0 → Aut(M0)
yields a map H1(k,W0)→ H1(k,Aut(M0)), and for any w ∈ H1(k,W0), the resulting twist
M0,w of M0 is a product of Weil restrictions of general linear groups as in the statement of the
lemma. Therefore, it suffices to prove the following claim: The map f : H1(k,N0)→ H1(k,W0)
is a bijection.

Since H1(k,M0) is trivial by Hilbert’s Theorem 90, the fiber of f over the basepoint of
H1(k,W0) is a singleton. To prove the same for the other fibers, we use a twisting argument,
as in [Ser02, Chapter 1, Section 5.6, Corollary 2]. Let w ∈ H1(k,W0) with image n ∈ H1(k,N0)
under the section W0 → N0. Then there is an exact sequence of sets

H1(k,M0,n) −→ H1(k,N0,n) −→ H1(k,W0,w).

At the same time, since the image of n in H1(k,Out(M0)) acts by permuting the irreducible
components of the Dynkin diagram of M0, the twist M0,n of M must be an inner form of a
product of Weil restrictions of general linear groups. In other words, M0,n is a product of
groups of the form A×, where A is a central simple algebra over a separable extension of F .
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But Hilbert’s Theorem 90 holds in this setting as well: H1(k,A×) = 1 by [Ser79, Chapter X,
Section 1, Exercise 1]. So H1(k,M0,n) is trivial. This completes the proof of the first part.

Lastly, the claim about ellipticity follows since the center of M contains GLr1.

Remark 3.3.5 (No choices for GLN ). When G = GLN , there is a unique choice for κ and σ.

For σ, the root data of GLN and its twisted Levi subgroups have no torsion primes. Hence
K̃ = K by Theorem 3.6.8(b), and so σ = ρ⊗ κ.

For κ, we claim that Gn+1(F )−[x] = Gn+1(F )[x], from which it follows that K = K−. Indeed,
by Lemma 3.3.4, all elliptic tame twisted Levi subgroups of GLN , including Gn+1, are of the
form ResE/F GLd for E/F a tame extension such that N = d · [E : F ]. Moreover, using for
instance the lattice-chain model of the Bruhat-Tits building of the general linear group (see
[KP23, Remark 15.1.33]), we observe that GLd(E)[x] = E× ·GLd(E)x,0. Now

Gn+1(F )[x]

Z(G(F )) ·Gn+1(F )x,0
=
E× ·GLd(OE)

F× ·GLd(OE)
' E×

F× · O×E
' Z
e(E/F )Z

.

where e(E/F ) is the ramification degree of E/F . Since E/F is tame, if p = 2, then e(E/F )
is odd. So K = K−.

3.4 Heisenberg Fp-groups arising from p-adic groups

We recall that G is a reductive F -group, and we let H be a twisted Levi subgroup of G
that splits over a tamely ramified extension of F . Let x ∈ B(H,F ) ⊆ B(G,F ), and let
φ : H(F )→ C× be a (G,H)-generic character of some positive depth r, as in Definition 3.1.1.

The following lemma is due to Yu ([Yu01, Proposition 11.4]) if p > 2 and extends to the case
of p = 2.

Lemma 3.4.1. The group
(H,G)(F )x,r,r/2

(H,G)(F )x,r,r/2+ ∩ ker(φ̂)
is a Heisenberg Fp-group.

Proof. For brevity, denote this quotient group by V\, and write V :=
(H,G)(F )x,r,r/2

(H,G)(F )x,r,r/2+

, which

is an abelian group of exponent 1 or p.

When p 6= 2, the proof of Proposition 11.4 of [Yu01] still works as written also for our
more general notion of (G,H)-generic characters so that V\ (= J/N in Yu’s notation) is a
Heisenberg Fp-group.

When p = 2, Lemma 11.1 of [Yu01] still holds with the same proof, i.e., the bi-additive pairing
V × V → {±1} ⊂ C× given by (aJ+, bJ+) 7→ φ̂([a, b]) where J+ := (H,G)(F )x,r,r/2+, is well
defined and non-degenerate. Hence the center of V\ is

Z(V\) =
(H,G)(F )x,r,r/2+

(H,G)(F )x,r,r/2+ ∩ ker(φ̂)
' {±1},
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and V\/Z(V\) = V is an abelian 2-group of exponent at most 2. Hence the group V\ is a
Heisenberg F2-group by Definition 2.1.2.

Example 3.4.2 (Positive- and negative-type Heisenberg F2-groups in 2-adic groups). In this
example we show that both positive- and negative-type Heisenberg F2-groups can arise in
the construction of supercuspidal representations.

Suppose p = 2 and F has residue field kF . Let E/F be a quadratic unramified extension
of F and let σ be the nontrivial element of Gal(E/F ). Let G = GL(E/F ) be the group of
linear automorphisms of the F vector space E, isomorphic (after choosing an ordered basis
of E) to GL2. Then T = ResE/F Gm canonically embeds as a maximal torus of G through
the multiplication action of E× on E. Let x be such that G(F )x = GL(OE/OF ). Let n ≥ 1
be an integer, and let φ : E× → C× be a (G, T )-generic character of depth 2n. We claim that
(T,G)(F )x,2n,n/((T,G)(F )x,2n,n+ ∩ ker(φ̂)) is a negative-type Heisenberg F2-group.

The main problem is to describe the group (T,G)(E)x,2n,n/(T,G)(E)x,2n+,n+, and especially
the quotients of root groups, together with the action of Gal(E/F ) on this group. The root
groups have the following description: There are orthogonal idempotents e1 6= e2 in (E⊗F E)×

interchanged by Gal(E/F ) such that one root subgroup of G(E), call it Uα(E), is represented
in the ordered basis (e1, e2) by matrices of the form u(a) =

[
1 a
0 1

]
with a ∈ E, while the other,

call it U−α(E), is represented in this ordered basis by the matrices of the form v(b) =
[

1 0
b 1

]
with b ∈ E. It follows that Gal(E/F ) acts on Uα(E)x,n/Uα(E)x,n+ ⊕ U−α(E)x,n/U−α(E)x,n+

by
σ(ū(a) + v̄(b)) = v̄(σa) + ū(σa), (val(a), val(b) ≥ n),

where ū and v̄ denote the images of u and v in the above quotient spaces. Using the
commutator relation for opposite root groups, we see that

Q(ū(a) + v̄(b)) :=
(
u(a)v(b)

)2
mod (T,G)(E)x,2n+,n+ ≡ α∨(1 + ab) mod (T,G)(E)x,2n+,n+.

In other words, after identifying Uα(E)x,n/Uα(E)x,n+ ⊕ U−α(E)x,n/U−α(E)x,n+ with kE ⊕ kE
and T (E)x,2n/T (E)x,2n+ with kE, the quadratic form Q becomes the split form Q(a, b) = ab.
On the subspace of Gal(E/F )-invariants in kE ⊕ kE, which we can identify with kE by
matching a ∈ kE with (a, σa), the quadratic form restricts to the norm form Q(a) = a · σa.

We claim that the nondegenerate quadratic form Q′ := φ̂ ◦Q : kE → {±1} is non-split. Note
that the vanishing set of Q′ has size less than half of kE as follows by direct computation:

|Q′−1(1)| = (1
2
q − 1)(q + 1) + 1 = 1

2
q2 − 1

2
q < 1

2
|kE|.

Hence Q′ cannot be a split quadratic form, and therefore (T,G)(F )x,2n,n/((T,G)(F )x,2n,n+ ∩
ker(φ̂)) is of negative type.

At the same time, since the central product Q8◦Q8 is a positive-type Heisenberg F2-group (see
Example 2.1.8), doubling the previous example—that is, replacing G by G×G, T by T × T ,
φ by φ⊗ φ, and so on—yields an example where (T,G)(F )x,2n,n/((T,G)(F )x,2n,n+ ∩ ker(φ̂))
is of positive type. So both possibilities can arise.
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3.5 Weil representations of compact-mod-center open subgroups

Let Υ be a supercuspidal G-datum. In this subsection we first construct various auxiliary
subgroups and vector spaces from Υ which are needed both for the Heisenberg–Weil extension
step and for the proof of supercuspidality, and then we prove the remaining claims used in
the construction of smooth representations from Υ outlined in Section 3.2. In Section 3.6 we
will then prove that these representations are supercuspidal.

Let (Gn+1)x,0 be the connected parahoric integral model of G at x and let Gn+1 be the
reductive quotient of its special fiber. Hence Gn+1 is a reductive kF -group with Gn+1(kF ) =
(Gn+1)x,0/(Gn+1)x,0+. By Lemma 3.4.1, the group

V\i :=
(Gi+1, Gi)(F )x,ri,ri/2

(Gi+1, Gi)(F )x,ri,ri/2+ ∩ ker(φ̂i)

is a Heisenberg Fp-group. Moreover, the conjugation action of Gn+1(F )[x] induces an action

on V\i . By Fact 2.4.3(b) (for p = 2) and [Yu01, Lemma 11.3] (for p 6= 2), this yields a
homomorphism Gn+1(F )[x] → Ps(Vi).

For any tamely ramified finite field extension F ′/F , we define the following group and its
Fp-vector space quotient

Ṽ\i,F ′ :=
(Gi+1, Gi)(F

′)x,ri,ri/2
(Gi+1, Gi)(F ′)x,ri+,ri/2+

and Vi,F ′ :=
(Gi+1, Gi)(F

′)x,ri,ri/2
(Gi+1, Gi)(F ′)x,ri,ri/2+

.

We may drop the subscript F ′ if F ′ = F , that is, write Vi := Vi,F and Ṽ\i := Ṽ\i,F .

Note that V\i is an intermediate quotient between Ṽ\i and Vi. While we are eventually

interested in the group V\i , we will take advantage of the groups Ṽ\i,F ′ that allow us to deduce
results over F by proving the analogous results after base change.

The remaining objects that we like to introduce depend on two additional choices: T and λ.
Let T be a maximally split, tame maximal torus of Gn+1 with splitting field E/F such that
x is in the apartment A (T, F ) of T . Let λ ∈ X∗(T )Gal(E/F ) ⊗ R. The following discussion
will later be applied to several choices of λ, but we do not record λ in the notation as this
should be clear from the context.

Let S be the maximal split subtorus of T , let S be an integral model of S that is a split
maximal torus of (Gn+1)x,0, and let S = SkF , a maximal split torus in Gn+1. Then

λ ∈ X∗(S)⊗ R ' X∗(S)⊗ R.

Let P be the parabolic subgroup of Gn+1 containing S such that

Φ(P, S) = {α ∈ Φ(Gn+1, S) | λ(α) ≥ 0}

and let U be the unipotent radical of P. Define PE and UE analogously. Since λ is Gal(E/F )-
stable, there is a (parabolic) subgroup P of Gn+1 containing T such that

Φ(PE, TE) = {α ∈ Φ(Gn+1, T ) | λ(α) ≥ 0}.
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Let U be the unipotent radical of P and write

U(F )x,0 := U(F ) ∩G(F )x,0, P (F )x,0 := P (F ) ∩G(F )x,0.

We will now use λ to also define a partial polarization of each Vi.

For the isotropic subspaces, define the unipotent subgroups U±i,E of Gi,E by

U+
i,E :=

〈
Uα,E | α ∈ Φ(Gi, T ) r Φ(Gi+1, T ), λ(α) > 0

〉
U−i,E :=

〈
Uα,E | α ∈ Φ(Gi, T ) r Φ(Gi+1, T ), λ(α) < 0

〉
.

Given r̃ ∈ R̃, let U±i,E(E)x,r̃ be the compact subgroup generated by the groups Uα(E)x,r̃
with α ∈ Φ(U±i,E, TE). Since Φ(U±i,E, TE) is Gal(E/F )-stable, the group U±i,E descends to a

unipotent F -group Ui contained in Gi. We define U±i (F )x,r̃ := G(F ) ∩ U±i,E(E)x,r̃ for r̃ ∈ R̃.
Let

V±i,E :=
U±i,E(E)x,ri/2

U±i,E(E)x,ri/2+

, V±i :=
U±i (F )x,ri/2

U±i (F )x,ri/2+

= (V±i,E)Gal(E/F ),

where the last equality follows from the same arguments used to prove [Yu01, Corollary 2.3].
Via the inclusions of U±i,E(E)x,ri/2 and U±i,E(F )x,ri/2 into the appropriate subgroups of G(E)

and G(F ), we can identify V±i,E with a subgroup of Ṽ\i,E, and V±i with subgroups of Ṽ\i , of V\i ,
and of Vi.

For the nondegenerate part of the partial polarization, write Hi = ZGi(λ) and Hi+1 = ZGi+1
(λ)

and define the following subgroups of Ṽ\i and Ṽ\i,E:

Ṽ\i,0 :=
(Hi+1, Hi)(F )x,ri,ri/2

(Hi+1, Hi)(F )x,ri+,ri/2+

⊆ Ṽ\i and Ṽ\i,0,E :=
(Hi+1, Hi)(E)x,ri,ri/2

(Hi+1, Hi)(E)x,ri+,ri/2+

⊆ Ṽ\i,E.

By [Yu01, Proposition 2.2],

Ṽ\i = (Ṽ\i,E)Gal(E/F ), Ṽ\i,0 = (Ṽ\i,0,E)Gal(E/F ).

We also define the following Heisenberg Fp-group with its quotient Fp-vector space

V\i,0 :=
(Hi+1, Hi)(F )x,ri,ri/2

(Hi+1, Hi)(F )x,ri,ri/2+ ∩ ker(φ̂i)
� Ṽ\i,0 and Vi,0 :=

(Hi+1, Hi)(F )x,ri,ri/2
(Hi+1, Hi)(F )x,ri,ri/2+

.

Note that using the notation from Section 2.3, we have Vi = V\i/Z(V\i) = VV\i
.

Lemma 3.5.1. Vi = V+
i ⊕ Vi,0 ⊕ V−i is a partial polarization in the sense of Section 2.3.

Proof. It suffices to show that Vi,0 is a nondegenerate subspace and that the subspaces
V+
i and V−i are isotropic and orthogonal to Vi,0. The subspace Vi,0 is nondegenerate by
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Lemma 3.4.1 applied to Hi+1 ⊆ Hi and the character φi|Hi+1
, which is (Hi, Hi+1)-generic of

depth ri because
Φ(Hi, T ) \ Φ(Hi+1, T ) ⊆ Φ(Gi, T ) \ Φ(Gi+1, T ),

and because φi can be represented by an element in gi(F )∗ of depth −ri that is trivial on the
sum t⊥ of the root subspaces of gi(F ) with respect to T hence its restriction to hi has also
depth −ri. The subspaces V+

i and V−i are isotropic because they embed as abelian subgroups
of V\i . To see that V+

i and V−i are orthogonal to Vi,0, it is enough to show that they are

normalized by V\i,0, or equivalently, by Ṽ\i,0, and this can be checked over E by Galois descent.
Using the commutator relations for root groups, see, e.g., [Yu01, Section 6], we see that for
α ∈ Φ(Hi, T ) r Φ(Hi+1, T ), β ∈ Φ(Hi+1, T ), the images of the root groups Uα(E)x,ri/2 and

Uβ(E)x,ri and of T (E)x,ri normalize the groups V±i,E. Hence Ṽ\i,0,E normalizes V±i,E.

Recall that we also view V+
i as a subgroup of Ṽ\i .

Lemma 3.5.2. The action of Gn+1(F )[x] on Ṽ\i induced by conjugation satisfies the following
properties.

(a) We have g(V+
i ) = V+

i and g(V+
i × Ṽ\i,0) = V+

i × Ṽ\i,0 for all g ∈ P(kF )

(b) We have g(x) · x−1 ∈ V+
i for all g ∈ U(kF ) and all x ∈ V+

i × Ṽ\i,0.

Proof. We first analyze the situation over E, then pass to F . Since T is split over E, these three
claims reduce to a commutator calculation with root groups, and follow from the following
observations. Let α ∈ Φ(Gn+1, T ) with λ(α) ≥ 0 (a root of PE), let β ∈ Φ(Gi, T )rΦ(Gi+1, T )

with λ(β) ≥ 0 (a potential “root” of V+
i × Ṽ\i,0), and suppose iα+ jβ ∈ Φ(Gi, T ) with i, j > 0

(a root whose root group might appear in the commutator of the previous two root groups).
The following three claims are proved by the subsequent observations about roots:

� PE(kE) preserves V+
i,E: If λ(β) > 0, then λ(iα + jβ) > 0.

� PE(kE) preserves V+
i,E × Ṽ\i,0,E: If λ(β) ≥ 0, then λ(iα + jβ) ≥ 0.

� g(x) · x−1 ∈ V+
i,E for all g ∈ UE(kE) and all x ∈ V+

i,E × Ṽ\i,0,E: If λ(α) > 0 and λ(β) ≥ 0,
then λ(iα + jβ) > 0.

Now the result over F follows from Galois descent, using V+
i = (V+

i,E)Gal(E/F ), Ṽ\i,0 =

(Ṽ\i,0,E)Gal(E/F ), U(kF ) ⊆ UE(kE)Gal(E/F ), and P(kF ) ⊆ PE(kE)Gal(E/F ).

Recall the normal subgroup (Gn+1)−[x] ⊆ (Gn+1)[x] from Section 3.2.

Corollary 3.5.3. Let H be the image of (Gn+1)−[x] under the map (Gn+1)−[x] → Ps(Vi) induced

by conjugation. Then the Heisenberg representation ωi of V\i extends to a Heisenberg–Weil
representation of H n V\i.

28



Tame supercuspidal representations Jessica Fintzen and David Schwein

Proof. If p 6= 2, the result follows from [Gér77, Lemma 2.4(a)], which we already used in the
definition of Weil representations (see Definition 2.5.2), so we assume p = 2 to avoid further
case distinctions. By the definition of (Gn+1)

−
[x] and the fact that the image of Z(Gn+1) in

Ps(Vi) is trivial, there is a Borel subgroup B of Gn+1 with unipotent radical N such that the
image Hp of N(kF ) in Ps(Vi) is a Sylow p-subgroup of H. We choose λ ∈ X∗(T )Gal(E/F ) ⊗ R
such that P = B and U = N. It follows from Lemma 3.5.2(a) that Hp is contained in P(V+

i ),

where the anisotropic subspace V+
i ⊆ Vi is viewed as a subgroup of V\i via the above described

splitting and P is as defined in Definition 2.5.4. Hence the existence of the Heisenberg–Weil
representation follows from Definition 2.5.6 and Lemma 2.5.5.

Notation 3.5.4. We denote the composition of (Gn+1)
−
[x] � H with the Heisenberg–Weil

representation of Corollary 3.5.3 also by ωi.

There is a potential ambiguity in the construction of ωi when p = 2, because a priori the
Heisenberg–Weil representation of a finite group is only well-defined up to a character of this
finite group that has order one or two. However, the next result will imply that this finite
group has no characters of order two if q > 2, implying that the extension ωi is uniquely
defined (see Proposition 3.5.6).

Lemma 3.5.5. If p = 2 and q > 2, then (Gn+1)−[x]/(Z(G) · (Gn+1)x,0+) has no characters of
order two.

Proof. The group (Gn+1)−[x]/(Z(G) · (Gn+1)x,0+) fits into the short exact sequence

1
(Gn+1)x,0

Z(G)0 · (Gn+1)x,0+

(Gn+1)−[x]

Z(G(F )) · (Gn+1)x,0+

(Gn+1)−[x]

Z(G(F )) · (Gn+1)x,0
1.

By definition, the righthand quotient has no characters of order two. So it suffices to
show that the lefthand kernel has no characters of order two. But already the quotient
(Gn+1)x,0/(Gn+1)x,0+, the Fq-points of a reductive Fq-group, has no characters of order two
by Lemma C.5.

Proposition 3.5.6. Suppose q > 2. Let H be the image of (Gn+1)
−
[x] under the map

(Gn+1)
−
[x] → Ps(Vi) induced by conjugation. Then the Heisenberg representation ωi of V\i

extends uniquely to a Heisenberg–Weil representation of H n V\i.

Proof. By Corollary 3.5.3 it remains to prove uniqueness of the extension. This follows from
Lemma 3.5.5: the group H here is a quotient of the group appearing there because (Gn+1)x,0+

and Z(G) act trivially on V\i .

To finish this subsection, we combine the representations ωi to make a representation of K−.
This step is almost exactly as in [Yu01], but we spell it out in detail for clarity.
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Construction 3.5.7 (Homomorphisms from iterated semidirect products). Suppose we
are given groups A1, . . . , An together with an action (b, a) 7→ ba of Aj on Ai for every
1 ≤ i < j ≤ n. If the “cocycle condition”

cb(ca) = cba is satisfied for all i < j < k and a ∈ Ai,
b ∈ Aj, c ∈ Ak, then we can form the iterated semidirect product Ao := A1 o · · · o An.
It is straightforward to check that under these circumstances the semidirect product is
associative, like the direct product, so that there is no need to worry about the order of
inserting parentheses in this iterated semidirect product.

Suppose we are given another group A′ and homomorphisms fi : Ai → A′. Then the induced
map fo : Ao → A′ defined by (a1, . . . , an) 7→ f1(a1) · · · fn(an) is a homomorphism if and only
if fi(

ba) = fj(b)fi(a)fj(b)
−1 for every 1 ≤ i < j ≤ n and a ∈ Ai and b ∈ Aj.

Such iterated semidirect products naturally arise from the following situation. Suppose
that B is an ambient group containing the Ai as subgroups and that Aj normalizes Ai
for 1 ≤ i < j ≤ n. Using the conjugation action, we see that the cocycle condition is
satisfied (because cbc−1 · c = cb) and thus we may form the iterated semidirect product Ao.
Multiplication induces a homomorphism Ao → B, and we write A1 · · ·An for its image. In
the situation of the second paragraph of this construction, the homomorphism fo : Ao → A′

descends to a homomorphism f : A1 · · ·An → A′ if and only if f1(a1) · · · fn(an) = 1 whenever
a1 · · · an = 1 and ai ∈ Ai.

Lemma 3.5.8. There exists a unique representation κ− of K− with underlying vector space
Vκ− :=

⊗n
i=1 Vωi such that

(a) the restriction of κ− to (Gn+1)−[x] is ⊗ni=1(φi|(Gn+1)−
[x]
⊗ ωi), and

(b) the restriction of κ− to (Gj)x,rj ,rj/2 for 1 ≤ j ≤ n is

j−1⊗
i=1

φ̂i|(Gj)x,rj ,rj/2 ⊗ ωj ⊗
n⊗

i=j+1

φ̂i|(Gj)x,rj ,rj/2 ,

where ωj denotes the composition of (Gj)x,rj ,rj/2 � V\j with the Heisenberg representation
ωj.

Proof. We will prove the existence of κ−. Uniqueness will then follow immediately. To make
the notation more uniform, write

Kj :=

{
(Gj)x,rj ,rj/2 if 1 ≤ j < n+ 1,

(Gn+1)−[x] if j = n+ 1.

Note for future use in the proof that if j 6= i, then Kj is contained in the domain of φ̂i.

We apply the observations from Construction 3.5.7. The group K− is a quotient of the
iterated semidirect product K1 o · · ·oKn+1. Fix i with 1 ≤ i ≤ n. For each 1 ≤ j ≤ n+ 1,
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define the homomorphism κ−ij : Kj → GL(Vωi) by

κ−ij =


φ̂i|Kj if j 6= i and j 6= n+ 1

ωi if j = i 6= n+ 1

φi|Kj ⊗ ωi if j = n+ 1.

Note that in the second case ωi denotes a Heisenberg representation, and in the third case
it denotes a Weil representation, both restrictions of a Heisenberg–Weil representation. We
claim that for each fixed i, the representations (κ−ij)1≤j≤n+1 induce a representation κ−i of K−.
This claim suffices because one can then define κ− := ⊗ni=1κ

−
i .

To prove the claim, we have to first show that the map on the iterated semidirect product
induced by the representations (κ−ij)1≤j≤n+1 is a homomorphism. For this we use the criterion
of Construction 3.5.7, which requires us to check that

κ−ij(aba
−1) = κ−ik(a)κ−ij(b)κ

−
ik(a)−1 (3.5.9)

for all j < k, a ∈ Kk, b ∈ Kj. We distinguish four cases. First, if j = i and k = n+ 1, then
(3.5.9) holds by the definition of the Heisenberg–Weil representation. In the remaining cases
one of κ−ij or κ−ik is a character and so (3.5.9) amounts to showing that [Kk, Kj] ⊆ ker(κ−ij).
Second, if j = i and k 6= n+ 1 then (3.5.9) holds because

[Kk, Ki] ⊆ [(Gi)x,0+, Ki] ⊆ (Gi)x,ri+,ri/2+ ⊆ ker(ωi),

by a root-group commutator calculation and Galois descent. In the remaining cases κ−ij = φ̂i|Kj
because j 6= i. Third, if j < i, then (3.5.9) holds because [Kk, Kj ] ⊆ Kj ⊆ ker(φ̂i). Fourth, if
i < j, then (3.5.9) holds because [Kk, Kj ] ⊆ [Gi+1(F ), Gi+1(F )] ⊆ ker(φi), as φi is a character

of Gi+1(F ), and ker(φi) ∩ [Kk, Kj] ⊆ ker(φ̂i) since φ̂i extends φi|[Kk,Kj ].
It remains to show that (κ−i )o descends to a representation κ−i of K−, for which we need
to prove that κ−i1(a1) · · ·κ−i,n+1(an+1) = Id, the identity linear transformation, whenever
a1 · · · an+1 = 1 with aj ∈ Kj for 1 ≤ j ≤ n+ 1. So suppose a1 · · · an+1 = 1 with aj ∈ Kj for

1 ≤ j ≤ n + 1. Then κ−ii(ai) = φ̂i(ai) Id because ai ∈ Ki ∩
∏

1≤j≤n+1,j 6=iKj ⊆ (Gi)x,ri,ri−1
⊆

(Gi)x,ri,ri/2+, and κ−i,n+1(an+1) = φ̂i(an+1) Id because an+1 ∈ Kn ∩
∏n

j=1 Kj ⊆ (Gn+1)x,0+,

a group on which ωi is trivial. Hence κ−i1(a1) · · ·κ−i,n+1(an+1) = φ̂i(a1) · · · φ̂i(an+1) Id =

φ̂i(a1 · · · an+1) Id = Id.

For later use, let us record the following intertwining property.

Lemma 3.5.10. Suppose q > 2. For every k ∈ K, we have kκ− ' κ−. In particular, if
κ is an irreducible representation of K that contains κ− when restricted to K−, then κ is
κ−-isotypic.
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Proof. Let k ∈ K. Since K− normalizes κ−, and K = K− · (Gn+1)[x], we may assume
without loss of generality that k ∈ (Gn+1)[x]. Then k is contained in the group K ′ =

(G1)x,r1/2+ · · · (Gn)x,rn/2+(Gn+1)[x], and hence normalizes the character φ̂ := ⊗ni=1φ̂i|K′ . Since
the restriction of κ− to the normal subgroup

K+ := (G1)x,r1/2+ · · · (Gn)x,rn/2+(Gn+1)x,0+

is φ̂|K+-isotypic, and since the restriction of κ− to

K0+ := (G1)x,r1/2 · · · (Gn)x,r1/n(Gn+1)x,0+

is by the theory of Heisenberg representations the unique (up to isomorphism) irreducible
representation that is φ̂|K+-isotypic when restricted to K+, we obtain kκ−|K0+ ' κ−|K0+ .
Thus it remains to show that under this isomorphism kκ−(g) and κ−(g) agree for g ∈ (Gn+1)−[x].

Since ⊗ni=1φi|(Gn+1)−
[x]

is the restriction of the character ⊗ni=1φi|(Gn+1)[x] , by Lemma 3.5.8, it

suffices to show that Weil representations kω−i (g) and ω−i (g) agree for 1 ≤ i ≤ n under the
isomorphism that matches the underlying Heisenberg representations. This follows from the
uniqueness of the extension of the Heisenberg representation (see Proposition 3.5.6).

3.6 Supercuspidal representations

We keep the notation from the previous subsections. In particular, Lemma 3.5.8 provides us
with a representation κ− of K−, and we denote by κ an irreducible representation of K that
contains κ− when restricted to K−, and by σ an irreducible representation of NK+(ρ ⊗ κ)

that contains (ρ⊗ κ) when restricted to K. Our objective is to prove that c-ind
G(F )
NK+ (ρ⊗κ)(σ)

is irreducible supercuspidal if q > 3 (see Theorem 3.6.9(a)).

Since our proof is similar to the proof of [Fin21, Theorem 3.1], we will mostly focus on the
modifications necessary to accommodate the new Heisenberg–Weil representation theory
approach for p = 2 and deal with the more complicated intertwining set when (GE2) fails.

For the first half of the proof, which follows [Yu01], in particular Sections 8 and 9, we need
to generalize some of Yu’s results, which is done in Lemmas 3.6.2 and 3.6.3. Due to the
more complicated structure of the intertwining set when (GE2) fails, we also work with the
image of the simply connected cover at times, on which the desired characters we work with
vanish (see Corollary 3.6.5). We also introduce two general lemmas, Lemmas 3.6.6 and 3.6.7,
that are used to avoid the need of [Gér77, Theorem 2.4] in the second part of the proof of
supercuspidality as Gérardin’s result does not apply to our Heisenberg–Weil representations
construction for p = 2.

We begin with a lemma that is not strictly necessary for the proof of supercuspidality, but
that allows a better understanding of the structure of the group from which we induce when
(GE2) fails. We write Hα := dα∨(1).

Lemma 3.6.1. Let G′ be a split reductive group over F with split maximal torus T . Let
X ∈ Lie∗(T )r for some integer r, and let X be the image of X in Lie∗(T )r/Lie∗(T )r+. Let
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W = (NG′(T )/T )(F ), and let W ′ be the subgroup of W generated by the reflections sα with
val(X(Hα)) > r, for α ∈ Φ(G′, T ). Then the group ZW (X)/W ′ is a p-group.

Proof. Using Lie∗(T )−r/Lie∗(T )(−r)+ ' X∗(T ) ⊗ kF , the group W ′ is generated by the
reflections sα with X(Hα) = 0, and we may apply [Ste75, Theorem 4.5] to (in the notation of
[Ste75]) H =

〈
X
〉

with Zw(H)0 = W ′ and X/X0 being an Fp-vector space.

The following is a generalization of [Yu01, Lemma 8.3] and the second part of the proof is a
variant of Yu’s arguments.

Lemma 3.6.2 (cf. [Yu01, Lemma 8.3]). Let H be a connected reductive F -group and let

H ′ ⊆ H be a twisted Levi subgroup that splits over a tame extension of F . Let H̃ be a possibly
disconnected reductive F -group and let f : H̃ → Aut(H) be an algebraic action such that the

induced map f ◦ : H̃◦ → Had is surjective with central kernel.

Let X ∈ Lie∗(H ′)H
′
(F ) be (H,H ′)-generic of depth −r. Then there is a subgroup H̃ ′ of

NH̃(H ′) containing the identity component of NH̃(H ′) such that:

(a) If h ∈ H̃(F ), and Y1, Y2 ∈ Lie∗(H ′)x,−r are regular semisimple that satisfy

Y1 ≡ Y2 ≡ X (mod Lie∗(H ′)x,(−r)+) and Ad(h)Y1 = Y2,

then h ∈ H̃ ′(F ).

(b) There is a short exact sequence of groups 1 → A′ → π0(H̃
′)(F sep) → A → 1 where

A ⊆ π0(H̃)(F sep) and A′ is a p-group which is trivial if φ satisfies (GE2).

Proof. To start with, we give the construction of H̃ ′. Let T be a maximal torus of H ′ and let
E be a finite Galois field extension of F over which T is split. Note that we do not assume
E/F to be tamely ramified. We may identify Lie∗(T ) with the subspace Lie∗(H ′)T ⊆ Lie∗(H ′)
on which the adjoint action of T is trivial, and X ∈ Lie∗(T ) under this identification because

Lie∗(T ) ⊇ Lie∗(H ′)H
′
. Let ÑT := NH̃(H ′, T ), let NT := NH̃◦(H

′, T ), and let N ′T be the

normalizer of T in f ◦−1(H ′/Z(H)). So N ′T ⊆ NT ⊆ ÑT , each group of finite index in the

next one. We define H̃ ′ to be the F -subgroup of NH̃(H ′) for which

H̃ ′E = ZÑT (X)E · f ◦−1(H ′/Z(H))E,

where X is the image of X modulo Lie∗(T )x,(−r)+. Note that this construction is independent

of the choice of E as replacing E by a larger field extension yields the same group H̃ ′.
Moreover, this construction is also independent of the choice of T : If T ′ is any other maximal
torus of H ′, then we may take E to split both T and T ′, and the construction of H̃ ′E produces
the same group for both tori because TE and T ′E are H ′(E)-conjugate.
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The exact sequence of (b) is constructed by observing that N ′T is a normal subgroup of

ZNT (X) and π0(H̃ ′) fits into the short exact sequence

1
ZNT (X)

N ′T
π0(H̃ ′)

ZÑT (X)

ZNT (X)
1.

By Lemma 3.6.1, the first group in this sequence is a p-group, and it follows immediately
from the definition of (GE2), [Yu01, page 596], that this group is trivial if X also satisfies
(GE2).

It remains to prove (a), so let h, Y1 and Y2 be as in (a). Set Tj := ZH′(Yj)
◦ for j = 1, 2, which

is a maximal torus of H ′. Let E/F be a finite Galois extension splitting T1 and T2. Take
h′ ∈ f ◦−1(H ′/Z(H))(E) such that T2 = f(h′)(T1). Then Y0 := f(h′)(Y1) ∈ Lie∗(T2)−r by
[Yu01, Lemma 8.2], where we identify Lie∗(T2) with the subspace Lie∗(H ′)T2 ⊆ Lie∗(H ′) on
which the adjoint action of T2 is trivial. We have Lie∗(T2) ⊇ Lie∗(H ′)H

′
, so that X ∈ Lie∗(T2)

under this identification. Using [Yu01, Lemma 8.2] we obtain

Y0 ≡ f(h′)(X) = X ≡ Y2 (mod Lie∗(T2)(−r)+).

The element n := hh′−1 ∈ H̃(E) normalizes T2. Moreover,

f(n)(X) ≡ f(n)(Y0) = Y2 ≡ X (mod Lie∗(T2)(−r)+).

Since X is (H,H ′)-generic of depth −r, if α ∈ Φ(H,T2), then

val(X(Hα)) =

{
∞ if α ∈ Φ(H ′, T2)

−r if not.

As n ∈ H̃(E) preserves the set Φ(H,T2), it follows that the element n also preserves the
subset Φ(H ′, T2) and hence normalizes H ′. Hence n ∈ ZÑT2 (X)(E), and therefore

h = nh′ ∈ H̃(F ) ∩ (ZÑT2
(X)(E) · f ◦−1(H ′/Z(H))(E)) = H̃ ′(F ).

Replacing [Yu01, Lemma 8.3] by Lemma 3.6.2 in Yu’s work we obtain the analogue of (the
first half of) [Yu01, Theorem 9.4] in our more general setting. However, due to the more
complicated intertwining set when (GE2) fails, we will have to work with a more general
statement that only considers the restriction to the image of the simply connected covers of
appropriate groups. Recall that we denote the image of Gsc(F ) in G(F ) by G(F )\.

Lemma 3.6.3 (cf. [Yu01, Theorem 9.4]). Let H̃ be a possibly disconnected reductive F -group
with identity component H, let H ′ ⊆ H be a twisted Levi subgroup that splits over a tame
extension of F , and let φ : H ′(F )→ C× be a character that is (H,H ′)-generic relative to x

of depth r. Then there exists a subgroup H̃ ′ of NH̃(H ′) with identity component H ′ satisfying
the following properties:
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(a) If h ∈ H̃(F ) intertwines the restriction of φ̂(H,x) to (H ′, H)x,r,r/2+ ∩ H(F )\, then

h ∈ H(F )x,r/2 · H̃ ′(F ) ·H(F )x,r/2.

(b) There is a short exact sequence of groups 1 → A′ → π0(H̃
′)(F sep) → A → 1 where

A ⊆ π0(H̃)(F sep) and A′ is a p-group which is trivial if φ satisfies (GE2).

In particular, if H̃ is connected and p is not a torsion prime for Ĝ, then H̃ ′ = H ′.

Proof. Let c : Hsc → H be the simply-connected cover of Hder ⊆ H. Since Out(Hder) ⊆
Out(Hsc), where Out(−) denotes the algebraic group of outer automorphisms, the conjugation
action of H(F ) on Hder lifts uniquely to an action of H(F ) on Hsc. Passage to F -points gives
an action of H(F ) on Hsc(F ) lifting the conjugation action on Hder(F ).

Let Hsc′ := H ′ ×H Hsc and denote by ψ the composition of c|(Hsc′,Hsc)x,r,r/2+ with φ̂(H,x).

As c((Hsc′, Hsc)x,r,r/2+) ⊆ (H ′, H)x,r,r/2+ ∩ H(F )\, if an element h ∈ H̃(F ) intertwines the

restriction of φ̂(H,x) to (H ′, H)x,r,r/2+ ∩H(F )\, then h also intertwines6 ψ.

Since φ is (H,H ′)-generic relative to x of depth r, there exists an element X ∈ Lie∗(H ′)H
′
(F )

that is (H,H ′)-generic of depth −r such that φ|H′(F )x,r is realized by X. By the construc-

tion of φ̂(H,x) its restriction to (H ′, H)x,r,r/2+ is therefore also realized by X ∈ (h′)∗x,−r ⊆
Lie∗(H ′)(F ) ⊆ Lie∗(H)(F ) (where the last inclusion is obtained by identifying Lie∗(H ′)(F )
with Lie∗(H)Z(H′)(F )), i.e., is given by composing

(H ′, H)x,r,r/2+/Hx,r+ ' (h′, h)x,r,r/2+/hx,r+

with Λ ◦X for a fixed additive character Λ : F → C× that is nontrivial on the ring of integers
O of F , but trivial on the maximal ideal of O.By precomposition with Lie(Hsc)→ Lie(H),
we can view X also as an element in Lie∗(Hsc)(F ). Note that then X ∈ Lie∗(Hsc′)x,−r ∩
Lie∗(Hsc′)H

sc′
(F ), and since the derivative of c maps Hα in Lie(Hsc(F ) to Hα in Lie(H)(F ),

the element X is (Hsc, Hsc′)-generic of depth −r. Since we have a diagram

(Hsc′, Hsc)x,r,r/2+/H
sc
x,r+ (H ′, H)x,r,r/2+/Hx,r+

(hsc′, hsc)x,r,r/2+/h
sc
x,r+ (h′, h)x,r,r/2+/hx,r+,

which commutes by the construction of the Moy–Prasad isomorphism given in the proof of
[KP23, Theorem 13.5.1] together with the functoriality of the Moy–Prasad isomorphism for
tori [KP23, Proposition B.6.9], the character ψ is represented by X.

Let H̃ ′ be the group obtained from Lemma 3.6.2 applied to the group H̃ acting on Hsc, the
twisted Levi subgroup Hsc′ ⊆ Hsc, and the Lie algebra element X ∈ Lie∗(Hsc′)H

sc′
(F ).

6Here we use the above action of H(F ) on Hsc(F ) and the following slight generalization of the usual
notion of intertwining: given a group A, a subgroup B, and a representation λ of B, an automorphism σ
of A intertwines λ if there is a nonzero B ∩ σ(B)-equivariant homomorphism from λ ◦ σ−1 to λ.
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Now we can generalize the arguments from the proof of [Yu01, Theorem 9.4] as follows to

apply to our more general setting of h ∈ H̃(F ) intertwining ψ using Lemma 3.6.2 in place of
[Yu01, Lemma 8.3].

More precisely, suppose h ∈ H̃(F ) intertwines the restriction of φ̂(H,x) to (H ′, H)x,r,r/2+ ∩
H(F )\. Then h also intertwines ψ. Now note that Proposition 1.6.7 of [Adl98] (which Yu
recorded in his setting as [Yu01, Theorem 5.1]) holds if, in the notation there, g is an algebraic
F -automorphism of G rather than simply (conjugation by) an element of G. Thus there
are regular semisimple elements Y1, Y2 in X + (hsc′, hsc)∗x,(−r)+,−r/2 such that Ad(h)Y1 = Y2.

Using [Yu01, Lemma 8.6], we can find k1, k2 ∈ Hsc(F )x,r/2 such that Zi := Ad(ki)Yi ∈
X + hsc′∗

x,(−r)+ for i = 1, 2. But Zi = Ad(c(ki))Yi as well, and c(ki) ∈ H(F )x,r/2. The element

h′ := c(k2) ·h ·c(k1)−1 satisfies Ad(h′)Z1 = Z2. Using Lemma 3.6.2 we obtain that h′ ∈ H̃ ′(F ),
as desired.

The last claim follows from generic characters (in our sense) automatically satisfying (GE2)

if p is not a torsion prime for Ĝ by [Yu01, Lemma 8.1].

Lemma 3.6.4. Let H be a reductive group over F and let y ∈ B(H,F ). Let ϕ be a character
of H(F ). Then the restriction of ϕ to the intersection H(F )\y,0+ of the image of the simply
connected cover H(F )\ and H(F )y,0+ is trivial.

Proof. We start by reviewing a few facts about semisimple anisotropic groups. Recall that a
reductive group is isotropic if it contains a unipotent element, or equivalently, if its derived
subgroup contains a nontrivial split torus. First, if H is a simply-connected isotropic F -group,
then H(F ) = [H(F ), H(F )] by [PR84, 6.15]. Hence H(F ) has no nontrivial characters in this
case. Second, if H is semisimple and anisotropic then H splits over an unramified extension,
H is of type A, and the quasi-split inner form of H is split (see [KP23, Remark 10.3.2]).
Hence Hsc(F ) is compact and a product of groups of the form SL1(D) where D is a division
algebra over a finite separable extension of F . Third, the derived subgroup of SL1(D) is the
pro-unipotent radical SL1(D)0+ (see [Rie70, page 504 and Corollary on page 521]).

Let c : Hsc → H be the simply-connected covering map. Let Hi, 1 ≤ i ≤ n, be the almost-
simple subgroups of H corresponding to the irreducible factors of the relative Dynkin diagram
of H. Using Hsc =

∏n
i=1H

sc
i , we can factor any element h ∈ H(F )\y,0+ as a product h1h2 · · ·hn

with hi in the image of Hsc
i (F ). At the same time, ϕ is trivial on the image of Hsc

i (F ) whenever
Hi is isotropic. Replacing H by the subgroup generated by the anisotropic Hi, we are reduced
to the case where H is anisotropic and semisimple, which we assume for the rest of the proof.

To finish the proof, it suffices to show that

c−1(H(F )0+) = ker(c) ·Hsc(F )0+, (3.6.4a)

since the restriction of ϕ to H(F )\0+ inflates to a character of c−1(H(F )0+) restricted from
a character of Hsc(F ). To prove (3.6.4a), note that if H → H ′ is an isogeny and (3.6.4a)
holds with H replaced by H ′, then (3.6.4a) holds for H. Hence we may assume that H is an
adjoint group. But then H is a product of almost-simple groups, and each factor is therefore
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of the form ResE/F (H ′), where E/F is a finite separable extension by [BT65, 6.21(ii)]. The
E-group H ′ is anisotropic, so that H ′(F ) = PGL1(D) for some division algebra over E.
Since H ′(F )0+ = PGL1(D)0+ (see [Fin22, Proposition A.12]), after replacing E by F , we are
reduced to the case where Hsc = SL1(D) and H = PGL1(D) for D a division algebra over F .

Let dimF (D) = n2. Now PGL1(D)0+ ' D×0+/F
×
0+ by [Kal19, Lemma 3.3.2(1)], so (3.6.4a)

amounts to the claim that if z ∈ SL1(D) satisfies z ∈ F× ·D×0+, then z ∈ µn(F ) · SL1(D)0+,
where µn(F ) denotes nth roots of 1 in F . This follows from the fact that if a ∈ F× satisfies
an ∈ F×0+, then a ∈ µn(F ) · F×0+.

Corollary 3.6.5. Let 1 ≤ i ≤ n, let y ∈ B(Gn+1, F ) and g ∈ NG(Gi+1, Gn+1)(F ). Then the
restriction of gφi to (Gi+1)\y,0+ is trivial. In particular, the restriction of gφi to U±j (F )y,rj/2 is
trivial for all i < j ≤ n.

Proof. Apply Lemma 3.6.4 to the group H = Gi+1 and the character ϕ = gφi.

In order to generalize the second half of the proof of supercuspidality in [Fin21, Theorem 3.1]
we need two more lemmas that allow us to avoid [Gér77, Theorem 2.4], which is not available
for the Heisenberg–Weil representations in characteristic 2.

Lemma 3.6.6. Let P and H be finite groups and U EP a normal subgroup. Let P act on H
by automorphisms, and let (π, V ) be a representation of P nH such that π|H is irreducible.
Suppose that U acts trivially on H and U ⊆ [P,U ]. Then π|U is trivial.

Proof. Since U and H commute, the elements of π(U) act H-equivariantly on V , hence are
scalars by Schur’s Lemma. So π|U is isotypic for a character φ of U . Moreover, since P
normalizes U , it normalizes π|U , hence φ. In other words, φ([p, u]) = 1 for all p ∈ P and
u ∈ U . Hence φ is trivial.

Lemma 3.6.7. Let k be a field, let H be a quasi-split reductive k-group, let P be a parabolic
subgroup of H, and let U be the unipotent radical of P . If either |k| > 3, or if |k| = 3 and
Had has no factor isomorphic to PGL2 or SO5, then U(k) ⊆ [P (k), U(k)].

Our hypothesis on k is not entirely optimal when |k| = 3, but some assumptions are needed
because the conclusion is false for Spin5(F3) = Sp4(F3).

Proof. Let S be a maximal split torus of H contained in P and fix α ∈ Φ(G,S). We will
show that Uα(k) ⊆ [P (k), U(k)].

We claim that there is s ∈ S(k) such that α(s) 6= 1. Indeed, if |k| > 3, then there is t ∈ k×
such that t2 6= 1, and α(α∨(t)) = t2 6= 1. If |k| = 3, then our additional assumption gives
β ∈ Φ(G,S) such that 〈α, β∨〉 = −1, and then α(β∨(t)) 6= 1 for any t ∈ k× r {1}.
It suffices to show that Uα(k) ⊆ [S(k), Uα(k)]. Take s ∈ S(k) such that α(s) 6= 1. If
2α /∈ Φ(G,S), then Uα(k) is abelian and S(k)-equivariantly isomorphic to its Lie algebra gα(k),
and the claim follows from the fact that the endomorphism Ad(s)− 1 of gα is multiplication
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by α(s)− 1 and hence invertible. If 2α ∈ Φ(G,S), then the quotient Uα(k)/U2α(k) is S(k)-
equivariantly isomorphic to the root space gα(k), and the same argument as above shows
that for every u ∈ Uα(k) there is u′ ∈ Uα(k) and s ∈ S(k) such that [s, u′] = u (mod U2α(k)).
Now we are done because by the previous case, U2α(k) ⊆ [S(k), U2α(k)].

Now we are in a position to prove the key intertwining result, Theorem 3.6.8, following
the proof of [Fin21, Theorem 3.1]. This result will immediately imply the main theorem,
Theorem 3.6.9.

Theorem 3.6.8. Let K̃ = NK+(ρ⊗ κ) and let σ ∈ Irr(K̃,K, ρ⊗ κ). Suppose q > 3.

(a) If g ∈ G(F ) intertwines σ, then g ∈ K̃.

(b) The group K̃/K is a finite p-group which is trivial if all φi satisfy (GE2), for example,

if p is not a torsion prime for Ĝ.

Proof. Suppose g ∈ G(F ) intertwines σ. Since σ restricted to the normal subgroup K E
K̃ = NK+(ρ⊗ κ) is (ρ⊗ κ)-isotypic, the element g also intertwines (K, ρ⊗ κ). Moreover, by

Lemma 3.5.10, σ further restricted to K− E K̃ is a direct sum of copies of (ρ ⊗ κ−), and
hence g also intertwines (K−, ρ⊗ κ−).

We first claim that g ∈ KG̃n+1(F )K for some subgroup G̃n+1 ⊆ NG(G1, . . . , Gn, Gn+1) whose
identity component is Gn+1 and whose component group is a finite p-group which is trivial
if all φi satisfy (GE2). We show this by induction following the first part of the proof of
[Fin21, Theorem 3.1], focusing on the differences arising from our more general setup.

Let 1 ≤ i ≤ n and suppose the induction hypothesis that g ∈ KG̃i(F )K where G̃i is a
subgroup of NG(G1, . . . , Gi−1, Gi) whose identity component is Gi and whose component

group is a finite p-group which is trivial if all φj with j < i satisfy (GE2). Let G̃i+1 be

the group H̃ ′ from Lemma 3.6.3 applied to H̃ = G̃i, H
′ = Gi+1, and φ = φi. Then by

induction, G̃i+1 ⊆ NG̃i
(Gi+1) ⊆ NG(G1, . . . , Gi, Gi+1) and π0(G̃i+1)(F sep) is a finite p-group

which is trivial if all φj with j ≤ i satisfy (GE2). We will show that g ∈ KG̃i+1(F )K.

Since K intertwines ρ ⊗ κ− by Lemma 3.5.10, we may assume that g ∈ G̃i(F ). As in
[Fin21, Theorem 3.1], the restriction of ρ⊗ κ− to (Gi)x,ri,(ri/2)+ is the restriction of

∏i
j=1 φ̂j.

Hence g intertwines (
∏i

j=1 φ̂j)|(Gi)x,ri,(ri/2)+ . Moreover, for 1 ≤ j ≤ i− 1, the restriction of φ̂j

to the intersection (Gi)
\
x,ri,(ri/2)+ of (Gi)x,ri,(ri/2)+ with the image of Gsc

i (F ) agrees with the

restriction of φj and is trivial by Corollary 3.6.5. Hence g intertwines φ̂i|(Gi)\x,ri,(ri/2)+
. Thus

Lemma 3.6.3 implies that g ∈ Gi(F )x,ri/2G̃i+1(F )Gi(F )x,ri/2 ⊆ KG̃i+1(F )K, which finishes
the induction step.

Therefore, by induction g ∈ KG̃n+1(F )K, and to finish the proof of Part (a) we may assume

that g ∈ G̃n+1(F ). It suffices to show that g ∈ G̃n+1(F )[x], because then g normalizes K and

hence, since g intertwines ρ⊗ κ, we have g ∈ NK+(ρ⊗ κ) = K̃, as desired.
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Suppose to the contrary that g[x] 6= [x]. Note that gx ∈ B(Gn+1, F ), so we can choose a
tame maximal, maximally split torus T of Gn+1 whose associated apartment contains x and
gx. We let λ ∈ X∗(T )Gal(E/F ) ⊗R be such that gx = x+ λ, where E denotes a splitting field
of T . We are now in the setting of Section 3.5 and use the notation defined there. Note in
particular that U(kF ) is non-trivial, because x is a minimal facet.

Let f be a nonzero element of HomK−∩gK−(g(ρ⊗ κ−), (ρ⊗ κ−)) and let Vf be the image of f .
We adjust the arguments of the bottom of page 2739 and the top of page 2740 of [Fin21] to
our setting, using the image of the simply connected cover at various places instead of the
groups considered in [Fin21], and using Corollary 3.6.5, to show that

Vf ⊆ Vρ ⊗C

n⊗
i=1

V
U+
i (F )x,ri/2

ωi ,

and that the action of

U := ((Gn+1)x,0 ∩ (Gn+1)\gx,0+)(Gn+1)\x,0+

on Vf via ρ ⊗ κ− is trivial. Noting that the image of U in Gn+1(kF ) is U(kF ), it will then

suffice to show that U acts also trivially on V
U+
i (F )x,ri/2

ωi for 1 ≤ i ≤ n, because this will
contradict that ρ is cuspidal.

For the convenience of the reader, we spell out a few more details. The restriction of ρ⊗κ− to
(Gn+1)\x,0+ is the restriction of the character

∏n
i=1 φi|Gn+1(F ) (times the identity), and hence is

the identity by Corollary 3.6.5. Recall that gx ∈ B(Gn+1, F ) and gGn+1 = Gn+1. Hence the
group (Gn+1)x,0 ∩ (Gn+1)\gx,0+ acts on Vf via the restriction of the character

∏n
i=1

gφi|Gn+1(F ),

whose restriction to (Gn+1)
\
gx,0+ is also trivial by Corollary 3.6.5. Thus the action of U

on Vf via ρ ⊗ κ− is trivial, as desired. Moreover, by definition of λ and U+
i (F )x,ri/2, we

have U+
i (F )x,ri/2 ⊆ (Gi)gx,ri,ri/2+, and hence U+

i (F )x,ri/2 acts on Vf via the restriction of the

character
∏i−1

j=1
gφj|Gn+1(F ) to U+

i (F )x,ri/2, hence by Corollary 3.6.5, the action of U+
i (F )x,ri/2

on Vf is trivial. On the other hand, also using Corollary 3.6.5, U+
i (F )x,ri/2 acts also trivially

on Vωj for 1 ≤ j ≤ n with i 6= j. Hence we conclude that Vf ⊆ Vρ ⊗C
⊗n

i=1 V
U+
i (F )x,ri/2

ωi , as
claimed.

To finish the proof of Part (a), it suffices to show that the action of U on V
U+
i (F )x,ri/2

ωi is trivial.
Since U ⊆ (Gn+1)

\
gx,0+ ∩ (Gn+1)

\
x,0+, the restriction of φi to U is trivial by Corollary 3.6.5,

so it suffices to show that the restriction of the Heisenberg–Weil representation to U(kF )

acting on V
U+
i (F )x,ri/2

ωi = V
V+
i

ωi is trivial. Since the image V+
i of U+

i (F )x,ri/2 in the Heisenberg

Fp-group V\i is a splitting of an isotropic subspace, we can identify V
V+
i

ωi as a representation of

V\i,0 with the irreducible Heisenberg representation for V\i,0 (with same central character) by
Lemma 2.3.4(b). At the same time, by Lemma 3.5.2(a), the group P(kF ) acts by conjugation
on V+

i and on the quotient
V\i,0 ' V\i,0V

+
i /V

+
i ,
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and the action of the subgroup U(kF ) on the quotient is trivial. Hence the action of

P(kF ) on Vωi preserves V
V+
i

ωi . Since q > 3, we may apply Lemma 3.6.7 to show that
U(kF ) ⊆ [P(kF ),U(kF )], and then apply Lemma 3.6.6 to conclude that U(kF ) acts trivially

on V
V+
i

ωi = V
U+
i (F )x,ri/2

ωi . This completes the proof of (a).

For the second part, we observed earlier in the proof, during the inductive argument, that
π0(G̃n+1)(F sep) is a finite p-group which is trivial if all φi satisfy (GE2). Moreover, we have

seen that if g intertwines σ, then g ∈ KG̃n+1(F )[x]K = K · G̃n+1(F )[x], and since all elements

of K̃ intertwine σ, we have K E K̃ E K · G̃n+1(F )[x]. Hence there is a chain of inclusions

K̃

K
⊆
G̃n+1(F )[x]

Gn+1(F )[x]

⊆ G̃n+1(F )

Gn+1(F )
⊆ π0(G̃n+1)(F ),

and so K̃/K is also a finite p-group which is trivial if all φi satisfy (GE2).

Theorem 3.6.9. Let K̃ = NK+(ρ⊗ κ) and let σ ∈ Irr(K̃,K, ρ⊗ κ). Suppose q > 3.

(a) Let σ ∈ Irr(K̃,K, ρ⊗ σ). Then c-ind
G(F )

K̃
(σ) is irreducible supercuspidal.

(b) c-ind
G(F )
K (ρ⊗ κ) '

⊕
σ∈Irr(K̃,K,ρ⊗κ)

(
c-ind

G(F )

K̃
(σ)
)⊕mσ

with mσ ∈ N≥1.

(c) If all φi satisfy (GE2), for example, if p is a torsion prime for Ĝ, then K̃ = K and the
representation c-indGK(ρ⊗ κ) is irreducible supercuspidal.

Proof. By Theorem 3.6.8(a), if g ∈ G(F ) intertwines σ, then g ∈ K̃ = NK+(ρ⊗κ). Moreover,
K is a normal, finite-index subgroup of K+ that contains Z(G(F )) and K/Z(G(F )) is
compact. Now the result follows by applying Lemma B.1, using the well-known fact that
for such a compactly-induced representation, irreducibility implies supercuspidality (see
[Fin, Lemma 3.2.1]).

A Alternating, symmetric, and quadratic forms

In this section we review the notions of symmetric forms, alternating forms, and quadratic
forms, paying close attention to the features of these objects in characteristic 2 (see [KMRT98,
pp. xvii–xxi]). Fix a base field k and a finite-dimensional k-vector space V .

Let B be a bilinear form on V . Recall that B is

� alternating if B(v, v) = 0 for all v ∈ V ,

� symmetric if B(v, w) = B(w, v) for all v, w ∈ V , and

� skew-symmetric if B(v, w) = −B(w, v) for all v, w ∈ V .

40



Tame supercuspidal representations Jessica Fintzen and David Schwein

If char(k) 6= 2, then alternating is equivalent to skew-symmetric. If char(k) = 2, then skew-
symmetric is equivalent to symmetric. Moreover, if char(k) = 2, then alternating implies
skew-symmetric but not conversely, as we see by considering the simplest nontrivial bilinear
pairing, (a, b) 7→ a · b on the one-dimensional vector space k.

A bilinear form B is called nondegenerate if for every nonzero v ∈ V there exists w ∈ W such
that B(v, w) 6= 0, and a nondegenerate alternating bilinear form is called a symplectic form.

A quadratic form Q on V is an element of Sym2(V ∗), that is, a homogeneous polynomial
function on V of degree 2. Any quadratic form Q defines a symmetric bilinear form BQ ∈
Sym2(V )∗ by the formula

BQ : (v, w) 7→ Q(v + w)−Q(v)−Q(w).

A quadratic form Q is defined to be nondegenerate if BQ is nondegenerate.

The assignment Q 7→ BQ defines a map

Sym2(V ∗)→ Sym2(V )∗

whose behavior depends on char(k). If char(k) 6= 2, then the map is an isomorphism with
inverse B 7→ (v 7→ 1

2
B(v, v)), giving a bijection between quadratic forms and symmetric

bilinear forms. If char(k) = 2, then the map Q 7→ BQ is not an isomorphism. Instead, its
kernel is the space (V ∗)(2) of diagonal quadratic forms and therefore, by a dimension count,
its image is the space Alt2(V )∗ of alternating bilinear forms.

Assume for simplicity in the remainder of this section that dim(V ) = 2n is even.

Let ω be a nondegenerate alternating form. A subspace W of V is isotropic if ω(w,w′) = 0
for all w,w′ ∈ W . A partial polarization of V is a decomposition V = V + ⊕ V0 ⊕ V − in which
V + and V − are isotropic, V0 is orthogonal to V + ⊕ V −, and the restriction of ω to V0 is
nondegenerate. A polarization is a partial polarization in which V0 = 0.

Similarly, let Q be a quadratic form. A subspace W of V is isotropic if every w ∈ W is
isotropic, meaning that Q(w) = 0.7 A subspace W of V is called anisotropic if Q(w) 6= 0 for
every w ∈ W − {0}. A partial polarization of V is a decomposition V = V + ⊕ V0 ⊕ V − in
which V + and V − are isotropic, V0 is orthogonal to V + ⊕ V − (with respect to BQ), and the
restriction of Q to V0 is nondegenerate. A polarization is a partial polarization in which V0 is
anisotropic.

The Witt index of Q is the dimension of one (equivalently, by a theorem of Witt, any
[Lam05, Section I.4]) maximal isotropic subspace of V . We say Q is split if Q has Witt
index n, in which case (V,Q) is isomorphic to the k-vector space k2n equipped with the
quadratic form

Q :
n∑
i=1

(xiei + x−ie−i) 7−→
n∑
i=1

xi · x−i, (A.1)

7Some authors call a subspace “isotropic” if it contains some isotropic vector and “totally isotropic” if
every vector is isotropic.
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where {ei : i ∈ {±1, . . . ,±n}} is a basis of V . If the Witt index of Q is n − 1, then there
is a separable quadratic extension `/k such that (V,Q) is isomorphic to the k-vector space
k2n−2 ⊕ ` equipped with the quadratic form

Q :
n−1∑
i=1

(xiei + x−ie−i) + ye0 7−→
n−1∑
i=1

xi · x−i + Nm`/k(y), xi ∈ k, y ∈ `, (A.2)

where {ei : i ∈ {±1, . . . ,±(n− 1)}} is a basis of k2n−2 and e0 is a non-zero element of `.

Given Q nondegenerate, we can form the orthogonal group O(V ) = O(Q) of g ∈ GL(V )
that preserve Q, meaning that Q(gv) = Q(v) for all v ∈ V . Let SO(V ) be the index-two
subgroup of O(V ) defined as the kernel of a map O(V )→ Z/2Z which is the determinant if
char(k) 6= 2 and the Dickson invariant if char(k) = 2. See [Con14, Appendix C.2] for more
discussion of the definition of the special orthogonal group in characteristic 2. The group
SO(V ) is reductive and of type Dn over the algebraic closure of k. Moreover, SO(V ) is split
if and only if Q is split. As [Tit66, Table II] explains, the group SO(V ) is quasi-split but not
split if and only if Q has Witt index n− 1.

B Basic Clifford theory and the intertwining criterion

Let B be a group, let C be a finite-index normal subgroup of B, and let ρ be an irreducible
representation of C. Clifford theory concerns two closely related problems: decomposing
the induced representation IndBC(ρ) and describing the set Irr(B,C, ρ) of irreducible repre-
sentations of B whose restriction to C contains ρ. In this appendix we collect some results
from basic Clifford theory and combine them with the classical intertwining criterion for
irreducibility of a compactly-induced representation.

Lemma B.1. Let C E B ≤ A be groups with C normal and finite-index in B, and let ρ be a
finite-dimensional irreducible representation of C.

(a) Sending σ to the σ-isotypic component of IndBC(ρ) defines a bijection

Irr(B,C, ρ)←→ Irr
(
EndB(IndBC(ρ))

)
.

Suppose in addition that A is locally profinite and ρ is smooth. Then

(b) c-indAC(ρ) '
⊕
σ

c-indANB(ρ)(σ) ⊗ Vσ, where the sum ranges over σ ∈ Irr(NB(ρ), C, ρ)

and each Vσ is a finite-dimensional vector space with trivial A-action.

Finally, suppose in addition that C is open and has compact image in A/Z(A). If every
element of A intertwining ρ lies in B, then the following holds.

(c) For every σ ∈ Irr(NB(ρ), C, ρ), the representation c-indANB(ρ)(σ) is irreducible.
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Proof. For the first part, since IndBC(ρ) is semisimple (see, e.g., [Kal, Fact A.3.2]), it decom-
poses as a finite direct sum

IndBC(ρ) '
⊕
σ

σ ⊗ Vσ

where σ ∈ Irr(B) and Vσ is a vector space with trivial B-action recording the (finite)
multiplicity of σ in IndBC(ρ). By Frobenius reciprocity, σ contributes to this direct sum if and
only if σ|C contains ρ. Using Schur’s Lemma (see, e.g., [Ren10, Section B.II]), we obtain that

EndB(IndBC(ρ)) '
⊕
σ

EndB(Vσ).

The claim now follows from the fact that a finite-dimensional matrix algebra has, up to
isomorphism, a unique irreducible representation.

The second part follows from transitivity of compact induction together with the proof of the
first part where B is replaced by NB(ρ), which shows that

c-ind
NB(ρ)
C (ρ) '

⊕
σ

σ ⊗ Vσ.

For the third part, we first claim that if a ∈ A intertwines σ, then a ∈ NB(ρ). Suppose
a ∈ A intertwines σ, then a intertwines σ|C and thus ρ because σ|C is ρ-isotypic. Hence
a ∈ B by assumption, and therefore a ∈ NB(ρ) because B normalizes C. The proof is now
completed using the standard intertwining criterion for irreducibility of a compactly-induced
representations. This criterion is stated when A = G(F ) in [Fin, Lemma 3.2.3], and the
proof adapts to our setting using the Mackey decomposition for locally profinite groups (see
[Kut77,Yam22]), after we note that Z(A) ⊆ B because Z(A) intertwines every representation
of a subgroup of A.

C Commutators in simply-connected quasi-split groups

Let k be a field and let H be a simply-connected quasi-split reductive k-group. In this
appendix we review for convenience a classical result of Tits, Corollary C.4, showing that
H(k) usually equals its own commutator subgroup, except for some degenerate cases where
k = F2 or F3 which we explicitly list. Although this result has been well-known for many
years, we were unable to find a source in the literature that states it.

Let H(k)+ be the subgroup of H(k) generated by the subgroups U(k) where U is the unipotent
radical of some parabolic subgroup of H.

Theorem C.1. Suppose that either

|k| ≥ 4, or

k ' F3 and H has no factor isomorphic to SL2, or

k ' F2 and H has no factor isomorphic to SL2, Sp4, G2, or SU3.

(C.2)

Then [H(k)+, H(k)+] = H(k)+.
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Proof. This is explained in [Tit64, Section 3.4].

Lemma C.3. If H satisfies (C.2), then H(k) = H(k)+.

Proof. This is claimed without proof in [Tit78, Section 1.1.2], using the standard notation
for the Whitehead group W (H, k) := H(k)/H(k)+; see [MO486102] for a proof.

Corollary C.4. H satisfies (C.2) if and only if [H(k), H(k)] = H(k).

Proof. The forward implication follows from Theorem C.1 and Lemma C.3. The reverse
implication is proved by direct computation: Clearly SL2(F2) ' S3, and the remaining groups
are worked out, for example, in [Wil09], specifically Section 3.3.1 (SL2(F3)), Section 3.5.2
(Sp4(F2) ' S6), Section 4.4.4 (G2(F2)), and Exercise 3.24 (SU3(F2)).

Lemma C.5. Let H be a reductive Fq-group. If Hsc(Fq) has trivial abelianization, for
instance, if q > 3, then the abelianization of H(Fq) has order prime to q.

Proof. Let H̃ → H be a z-extension (see [KP23, Section 11.4] for a discussion of this notion):
a surjective map of reductive Fq-groups whose kernel is an induced torus and for which

H̃der = H̃sc. Then the map H̃(Fq) → H(Fq) is surjective, and thus induces a surjection

on abelianizations. So without loss of generality, after replacing H by H̃, we may assume
that Hder = Hsc, and hence that Hder(Fq) has trivial abelianization. We have a short exact
sequence

1 Hder(Fq) H(Fq) (H/Hder)(Fq) 1

in which H/Hder is a torus. Since Hder(Fq) has trivial abelianization, the abelianizations of
H(Fq) and (H/Hder)(Fq) are isomorphic. So we are reduced to the case where H = T is a
torus, where the claim follows from the fact that every element of T (Fq) is semisimple, and
thus has order prime to q. That Hsc(Fq) has trivial abelianization when q > 3 follows from
Corollary C.4.

See Corollary C.4 and (C.2) for a list of when Hsc(Fq) fails to be perfect if q = 2 or 3.

D An example in the spin group

In this section we give an example of the failure of (GE2) which illustrates the need for
Clifford theory in our construction of supercuspidal representations. Our example shows that
the dimension of σ can be strictly larger than the dimension of ρ⊗ κ, as Remark D.11 spells
out. The example is an extension of [Ste75, 2.20 Example].

We start by isolating a certain class of tori that is well adapted for making examples.

Definition D.1. Let k be a field. A −1-torus is a k-torus T splitting field over a quadratic
extension `/k such that Gal(`/k) acts on X∗(T ) by negation.
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Concretely, a −1-torus is isomorphic to (U1
`/k)

n for some n.

Lemma D.2. Let T be a −1-torus with splitting field `.

(a) If a torus T ′ admits an isogeny to or from T then T ′ is a −1-torus.

Let G be a reductive group containing T as a maximal torus.

(b) W (G, T )(k) = W (G, T )(k).

(c) If k ' Fq then any other maximal torus T ′ which is a −1-torus is G(k)-conjugate to T .

(d) If k is a nonarchimedean local field and `/k is unramified then the G(k)-conjugacy class
of T is uniquely determined by the point B(T, F ) in B(G,F ).

Proof. The first two parts are easy to check. The third part follows from [DeB06, Lemma 4.2.1],
and the last part follows from the third and DeBacker’s description of unramified maximal
tori in reductive p-adic groups [DeB06, Theorem 3.4.1].

Lemma D.3. Let `/k be a separable quadratic extension, let T be a maximal torus of G := SL2

isomorphic to U1
`/k, and let N := NG(T ). Then

N(k)/T (k) =

{
1 if −1 /∈ Nm`/k(`

×)

Z/2Z if −1 ∈ Nm`/k(`
×).

Proof. Let G̃ := GL2, let T̃ := ZG̃(T ), and let Ñ := NG̃(T̃ ). We claim that

Ñ(k) ' T̃ (k) o Gal(`/k) = `× o Gal(`/k).

To see this, choose a basis for the 2-dimensional k-vector space `, yielding an isomorphism
of the matrix group GL2 with the group GL(`/k) of k-linear automorphisms of `. Then
`× ⊆ GL(`/k) through its multiplication action, and Gal(`/k) ⊆ GL(`/k) through its natural
action on `, proving the claim. Moreover, writing σ for the nontrivial element of Gal(`/k),

the normal basis theorem shows that det(σ) = −1. Returning to SL2, we see that N = Ñ ∩G.
We are finished after observing that det|T̃ = Nm`/k.

Corollary D.4. Let G be a reductive k-group such that Gad ' (PGL2)n, let `/k be a separable
quadratic extension, and let T be a −1-torus of G splitting over ` that is maximal in G. If
−1 ∈ Nm`/k(`

×) then

NG(T )(k)/T (k) ' W (G, T )(k̄) ' (Z/2Z)n.

45



Tame supercuspidal representations Jessica Fintzen and David Schwein

This concludes our general discussion of −1-tori.

In the rest of the section, let F be a nonarchimedean local field of residue characteristic p = 2
and let G be the split group over F of type Spin8. We use Bourbaki’s model for the root
system Φ(D4) and its Weyl group W (D4) [Bou02, Plate IV]:

Φ(D4) = {±ei ± ej : 1 ≤ i, j ≤ 4, i 6= j}

with basis ∆ = {e1 − e2, e2 − e3, e3 − e4, e3 + e4}. So W (D4) ' (Z/2Z)3 o S4, of order 26 · 3.

Let x be a special vertex of B(G,F ). Recall that SO4 ' (SL2)2/µ2, where µ2 is embedded
diagonally. The group (SO4)2 is a subgroup of SO8, and its preimage H in Spin8 is isomorphic
to (SL2)4/µ2, where µ2 is again embedded diagonally.

Lemma D.5. There exists an unramified −1-torus T maximal in H, hence G, such that the
B(T, F ) = {x}.

Proof. Since maximal tori of the special fiber of a parahoric group lift to unramified tori
[DeB06, Lemma 2.3.1], it suffices to show that (SL2,kF )4/µ2 contains a −1-torus. But (SL2,kF )4

contains a −1-torus because each SL2 factor does, and we are done by Lemma D.2(a).

In the remainder of this section, let T be a maximal torus of G as in Lemma D.5.

Lemma D.6. NG(T )(F )/T (F ) ' W (D4).

Proof. Let W := W (G, T )(F ), so that W = W (G, T )(F ) ' W (D4) by Lemma D.2(b), and
let W ′ := NG(T )(F )/T (F ), which we view as a subgroup of W . Let A := NH(T )(F )/T (F ).
Then A ⊆ W ′ and A ' (Z/2Z)4 by Corollary D.4.

Next, we show that W ′ contains a subgroup of order 64, a Sylow 2-subgroup. We will exhibit
this subgroup using the four copies SL

(1)
2 , . . . SL

(4)
2 of SL2 in H with root systems

Φ(T · SL
(1)
2 , T ) = {±(ē1 − ē2)}, Φ(T · SL

(2)
2 , T ) = {±(ē1 + ē2)},

Φ(T · SL
(3)
2 , T ) = {±(ē3 − ē4)}, Φ(T · SL

(4)
2 , T ) = {±(ē3 + ē4)}.

To avoid confusion, we write ēi for elements of X∗(T ) and ei for elements of X∗(S) with

S a maximal split torus, which will appear momentarily. Write Φi := Φ(T · SL
(i)
2 , T ), a

two-element subsystem of Φ := Φ(G, T ).

Let S be a split maximal torus of H whose apartment contains B(T, F ). Choose a pinning

P = (S,B, {Xi}1≤i≤4) of H where Xi ∈ Lie(SL
(i)
2 ) and Φ(B, S) = {e1±e2, e3±e4} and where

xP ∈ B(G,F ) is equal to x. Let σ0 ∈ W (G,S) act by the involution e1 ↔ e3, e2 ↔ e4. Then
for any lift n0 ∈ NG(S)(F ) of σ0, conjugation by n0 permutes the SL2 subgroups in the same
way:

SL
(1)
2 ←→ SL

(3)
2 , SL

(2)
2 ←→ SL

(4)
2 . (D.7)
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Take n0 to be the Tits lift of σ0 (the element denoted by φ(σ0) in [Spr09, Section 9.3.3])
with respect to P. Then Ad(n0) takes {Xi}1≤i≤4 to {εiXi}1≤i≤4 for some εi ∈ {±1}. Since
x = xP = xAd(n0)P , the action of n0 fixes x and thus preserves the H(F )-conjugacy class of T
by Lemma D.2(d). Hence there is an element h ∈ H(F ) such that n := hn0 normalizes T , and

n permutes the SL2-factors according to (D.7). Making a similar argument with SL
(1)
2 and

SL
(2)
2 exchanged, we find in summary that W ′ contains elements that act on the four-element

set {Φi : 1 ≤ i ≤ 4} by

(Φ1 ←→ Φ3, Φ2 ←→ Φ4), (Φ1 ←→ Φ4, Φ2 ←→ Φ3).

Thus, the group of order 4 generated by those elements together with the 8 elements of A,
which act trivially on this set, generate a subgroup of order 64 in W ′.

Since |W | = 64 · 3, to finish the proof it suffices to show that W ′ contains another of the
three Sylow 2-subgroups of order 64. Let H ′ be the reductive subgroup of G that contains T
and for which

Φ(H ′, T ) = {±e1 ± e3,±e2 ± e4}.

Then H ′ is isomorphic to H over F , and the proof is finished if we can show that H is
isomorphic to H ′ over F ; if so, then we can rerun the previous arguments in the proof for
this other copy of (SL2)4/µ2. For this, write Gx and Tx for the special fibers of the parahorics
at x of G and T , respectively. Since SL2 has no nontrivial inner forms over kF , we see that
Tx is contained in a copy of (SL2)4/µ2 in Gx whose root system is identified with that of H ′.
This shows that H ′ must be split, since the maximal reductive quotient of the special fiber
of the nonsplit form of SL2 is a torus, rather than SL2. Hence W ′ contains another Sylow
2-subgroup; so W ′ = W .

To define our exceptional character of T (F ), first observe that T (F ) ' U1
E/F (F )⊗Z X∗(T ).

Since Spin8 is simply-connected, X∗(T ) is the weight lattice of type D4. Number the
fundamental weights $i, 1 ≤ i ≤ 4, as in [Bou02, Plate IV, p. 272], so that $2 is dual to the
central vertex of the Dynkin diagram.

Lemma D.8. Let q ≥ 4 and let r be an odd integer with 1 ≤ r < val(2).

(a) There exist two order-two characters φi : U
1
E/F (F )→ C×, i = 1, 2 such that

depth(φ1) = depth(φ2) = depth(φ1φ2) = r.

(b) For all such φi, the following character φ : T (F )→ C× is (G, T )-generic of depth r:

φ(t) = φ1(t$2) · φ2(t$1+$3+$4).

Here we use the exponential notation tα := α(t).
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Proof. For the first part, consider the maximal 2-torsion quotient

U1
E/F (F )/U1

E/F (F )×2,

where (−)×2 forms the subgroup of squares. If a ∈ E×0 and val(a− 1) < val(2) then

val(a2 − 1) = val((a− 1)2 − 2(a− 1)) = 2 val(a− 1);

moreover, if val(a− 1) = 0 then val((a− 1)2) = val(a− 1) Since r is odd, the map

U1
E/F (F )r:r+ → U1

E/F (F )/
(
U1
E/F (F )×2 · U1

E/F (F )r+
)

is injective, and hence we can freely extend any character of the group U1
E/F (F )r:r+ to an

order-two character of U1
E/F (F ). Since the group U1

E/F (F )r:r+ ' kF has cardinality q and
q ≥ 4, this group has two linearly independent characters, completing the proof.

For the second part, coordinatize X∗(T ) as in Bourbaki: X∗(T ) = Z4 + Z$4, where $4 =
1
2
(e1 + e2 + e3 + e4). Since $1 +$3 +$4 = 2e1 + e2 + e3, we can rewrite φ as

φ(t) = φ1(t1t2) · φ2(t2t3).

After passing to the dual Lie algebra at depth −r, this description becomes

X = a1 ⊗ (e1 + e2) + a2 ⊗ (e2 + e3)

for some ai 6= 0. It is now straightforward to check that X is (G, T )-generic of depth −r.

Recall that W (D4) ' (Z/2Z)3 o S4. The group A4 contains a unique Sylow 2-subgroup,
the Klein four-group, which is normal. Let P be the subgroup of W (D4) generated by the
inversions (Z/2Z)3 and this Klein four-group. Then P ' (Z/2Z)3 o (Z/2Z)2 is a nonabelian
group of order 32, normal in W (D4).

Lemma D.9. The centralizer in NG(T )(F )/T (F ) of the character φ from Lemma D.8 is P .

Proof. The inversions (Z/2Z)3 centralize φ because the φi have order two. To see that the
Klein four-group centralizes φ, use that φ1(t1t2) = φ1(t3t4) and φ2(t2t3) = φ2(t1t4) because
e1 + e2 + e3 + e4 ∈ 2X∗(T ).

Corollary D.10. Let φ : T (F )→ C× be as in Lemma D.8 and let NG(T )(F )P be the preimage
of P under the projection to W (G, T ). Then

ZG(F )[x](φ̂) = NG(T )(F )P ·G(F )x,r/2.

Remark D.11. Consider the supercuspidal G-datum ((G, T ), x, r, 1, φ) where φ is as in
Lemma D.8, so that ρ ⊗ κ = φ̂ and NK+(φ̂) = NG(T )(F )P · G(F )x,r/2 by Corollary D.10.

Let σ be a representation of NK+(φ̂) that is φ̂-isotypic on K+. Then σ is determined by its
restriction σ0 to NG(T )(F )P , and conversely, any representation σ0 of NT (G)(F )P that is
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φ-isotypic on T (F ) determines such a σ by the formula σ(kn) = φ̂(k)σ0(n) for k ∈ G(F )x,r
and n ∈ NG(T )(F )P . So we might as well work with σ0.

Since σ0 and φ are trivial on ker(φ), we can interpret them as representations of the finite

group P̃ := NG(T )(F )P/ ker(φ). And since T (F )/ ker(φ) ' Z/2Z, the group P̃ fits into a
short exact sequence

1→ Z/2Z→ P̃ → P → 1.

Choosing σ0 amounts to choosing a representation of P̃ whose restriction to Z/2Z is nontrivial.
Hence there certainly exists a σ0 for which dim(σ0) > dim(φ) = 1, since P is nonabelian.
Moreover, if we choose two σ0 and σ′0 with dim(σ0) 6= dim(σ′0), then the resulting supercuspidal
representations π and π′ are not isomorphic because their formal degrees are different:

fdeg(π) =
dim(σ0)

vol(NK+(φ̂))
6= dim(σ′0)

vol(NK+(φ̂))
= fdeg(π′).

So our use of Clifford theory is unavoidable.
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Selected notation

◦ , 10
\, 6

AutZ-fix( ), 15

BQ, 41

(Gi)x,r̃,r̃′ = (Gi+1, Gi)(F )x,r̃,r̃′ , 21
(Gn+1)−[x], 21
Gn+1, 26
GL(W,R), 11

K, 20
K−, 21
K+, 20
κ, 21
κ−, 21

P , 17
Ps(V), 15
Ps◦(V), 16

φ̂, 20
φ̂(G′,x), 20

QP , 13

σ, 21

U+
i (F )x,r, 27

Vi, 26
V\i , 21
V\i , 26
V]B, 8
VP , 13

ωB, 8
ωP , 13
ωψ, 13

Υ, 19

Selected terminology

R-linearization, 12

exponent, 8
extraspecial p-group, 8

form
alternating, 40
nondegenerate, 41
quadratic, 41
skew-symmetric, 40
symmetric, 40
symplectic, 41

Frobenius–Schur type, 11

generic of depth r, 19

Heisenberg Fp-group, 8
Heisenberg k-group, 8
Heisenberg representation, 13

Heisenberg R-representation, 15
Heisenberg–Weil representation, 18

(partial) polarization, 14, 41
projective R-representation, 12
projective Weil representation, 16
projective Weil R-representation, 17
pseudosymplectic group, 15

R-representation, 11

splitting (of W), 14
subspace

anisotropic, 41
isotropic, 14, 41

supercuspidal G-datum, 19

−1-torus, 44
twisted Levi subgroup, 6
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[SS08] Vincent Sécherre and Shaun Stevens, Représentations lisses de GLm(D). IV. Représentations
supercuspidales, J. Inst. Math. Jussieu 7 (2008), no. 3, 527–574. MR2427423

[Ste01] Shaun Stevens, Intertwining and supercuspidal types for p-adic classical groups, Proc. London
Math. Soc. (3) 83 (2001), no. 1, 120–140. MR1829562

[Ste08] , The supercuspidal representations of p-adic classical groups, Invent. Math. 172 (2008),
no. 2, 289–352. MR2390287

[Ste75] Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63–92. MR0354892

[Tit64] J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313–329. MR164968

[Tit66] , Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous
Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 1966, pp. 33–62. MR224710

[Tit78] Jacques Tits, Groupes de Whitehead de groupes algébriques simples sur un corps (d’après V. P.
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[Wal86] J.-L. Waldspurger, Algèbres de Hecke et induites de représentations cuspidales, pour GL(N), J.
Reine Angew. Math. 370 (1986), 127–191. MR852514
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