SEMINAR S4D4 GRADUATE SEMINAR ON ADVANCED GEOMETRY WINTERSEMESTER 2022

Ursula Hamenstädt

Volume and Euler class

The goal of the seminar is to discuss various ways of looking at the Euler class of a sphere bundle over a manifold and its connection to (simplicial) volume.

References

- [BT82] R. Bott, L. Tu, Differential forms in algebraic topology, Springer Graduate Text 82 (1982).
- [Du03] J. Dupont, Fibre bundles and Chern-Weil theory, Lecutre Notes, Aarhus 2003.
- [F17] R. Frigerio, Bounded cohomology and discrete groups, AMS Math. Surveys and Monographs, AMS 2017.
- [KN69] S. Kobayashi, K. Nomizu, Foundations of differential geometry II, Interscience 1969.

Talks:

- The Euler class of an oriented rank two vector bundle, examples. BT82, p.70-77.
- (2) SO(n)-principal bundles and connections. Du03, p.21-25, 39-42.
- (3) Connections and the curvature. Du03, p.43-62.
- (4) Invariant polynomials and the Euler class as a characteristic class via axioms. Du03, p.83-85, KN69, p.314-320.
- (5) The Euler class of a sphere bundle as an obstruction class. BT82, p.122-126, F17, p.131-136.
- (6) Bounded cohomology. F17, p.53-59.
- (7) Flat sphere bundles and the bounded Euler class. F17, p.145-151.
- (8) The bounded Euler class and Milnor Wood inequalties. F17, p.151-154.
- (9) Maximal representations of surface groups into $PSL(2,\mathbb{R})$. F17, p.162-166.